Transcription apparatus of the yeast virus-like elements: Architecture, function, and evolutionary origin
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30346988
PubMed Central
PMC6211774
DOI
10.1371/journal.ppat.1007377
PII: PPATHOGENS-D-18-01035
Knihovny.cz E-zdroje
- MeSH
- cytoplazma MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- fungální proteiny genetika MeSH
- genetická transkripce * MeSH
- Kluyveromyces genetika MeSH
- konformace nukleové kyseliny MeSH
- molekulární evoluce * MeSH
- polyadenylace MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u hub MeSH
- responzivní elementy * MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie MeSH
- stabilita RNA MeSH
- viry genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA řízené RNA-polymerasy MeSH
- fungální proteiny MeSH
Extrachromosomal hereditary elements such as organelles, viruses, and plasmids are important for the cell fitness and survival. Their transcription is dependent on host cellular RNA polymerase (RNAP) or intrinsic RNAP encoded by these elements. The yeast Kluyveromyces lactis contains linear cytoplasmic DNA virus-like elements (VLEs, also known as linear plasmids) that bear genes encoding putative non-canonical two-subunit RNAP. Here, we describe the architecture and identify the evolutionary origin of this transcription machinery. We show that the two RNAP subunits interact in vivo, and this complex interacts with another two VLE-encoded proteins, namely the mRNA capping enzyme and a putative helicase. RNAP, mRNA capping enzyme and the helicase also interact with VLE-specific DNA in vivo. Further, we identify a promoter sequence element that causes 5' mRNA polyadenylation of VLE-specific transcripts via RNAP slippage at the transcription initiation site, and structural elements that precede the termination sites. As a result, we present a first model of the yeast virus-like element transcription initiation and intrinsic termination. Finally, we demonstrate that VLE RNAP and its promoters display high similarity to poxviral RNAP and promoters of early poxviral genes, respectively, thereby pointing to their evolutionary origin.
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Jeske S, Meinhardt F, Klassen R. Extranuclear Inheritance: Virus-Like DNA-Elements in Yeast In: Esser K, Löttge U, Beyschlag W, Murata J, editors. Progress in Botany. 68: Springer, Berlin, Heidelberg; 2007. p. 98–129.
Gunge N, Murata K, Sakaguchi K. Transformation of Saccharomyces cerevisiae with linear DNA killer plasmids from Kluyveromyces lactis. J Bacteriol. 1982;151(1):462–464. . PubMed PMC
Kikuchi Y, Hirai K, Hishinuma F. The yeast linear DNA killer plasmids, pGKL1 and pGKL2, possess terminally attached proteins. Nucleic Acids Res. 1984;12(14):5685–5692. 10.1093/nar/12.14.5685 . PubMed DOI PMC
Stam JC, Kwakman J, Meijer M, Stuitje AR. Efficient isolation of the linear DNA killer plasmid of Kluyveromyces lactis: evidence for location and expression in the cytoplasm and characterization of their terminally bound proteins. Nucleic Acids Res. 1986;14(17):6871–6884. 10.1093/nar/14.17.6871 . PubMed DOI PMC
Sor F, Fukuhara H. Structure of a linear plasmid of the yeast Kluyveromyces lactis; Compact organization of the killer genome. Curr Genet. 1985;9(2):147–155. 10.1007/Bf00436963 DOI
Tommasino M, Ricci S, Galeotti CL. Genome organization of the killer plasmid pGK12 from Kluyveromyces lactis. Nucleic Acids Res. 1988;16(13):5863–5878. 10.1093/nar/16.13.5863 . PubMed DOI PMC
Gunge N, Tamaru A, Ozawa F, Sakaguchi K. Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol. 1981;145(1):382–390. . PubMed PMC
Stark MJ, Boyd A, Mileham AJ, Romanos MA. The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast. 1990;6(1):1–29. 10.1002/yea.320060102 . PubMed DOI
Satwika D, Klassen R, Meinhardt F. Anticodon nuclease encoding virus-like elements in yeast. Appl Microbiol Biotechnol. 2012;96(2):345–356. 10.1007/s00253-012-4349-9 . PubMed DOI
Kempken F, Hermanns J, Osiewacz HD. Evolution of Linear Plasmids. J Mol Evol. 1992;35(6):502–513. 10.1007/Bf00160211 . PubMed DOI
Gunge N, Yamane C. Incompatibility of linear DNA killer plasmids pGKL1 and pGKL2 from Kluyveromyces lactis with mitochondrial DNA from Saccharomyces cerevisiae. J Bacteriol. 1984;159(2):533–539. . PubMed PMC
Romanos MA, Boyd A. A transcriptional barrier to expression of cloned toxin genes of the linear plasmid k1 of Kluyveromyces lactis: evidence that native k1 has novel promoters. Nucleic Acids Res. 1988;16(15):7333–7350. 10.1093/nar/16.15.7333 . PubMed DOI PMC
Kämper J, Meinhardt F, Gunge N, Esser K. In vivo construction of linear vectors based on killer plasmids from Kluyveromyces lactis: selection of a nuclear gene results in attachment of telomeres. Mol Cell Biol. 1989;9(9):3931–3937. 10.1128/mcb.9.9.3931 . PubMed DOI PMC
Kämper J, Esser K, Gunge N, Meinhardt F. Heterologous gene expression on the linear DNA killer plasmid from Kluyveromyces lactis. Curr Genet. 1991;19(2):109–118. 10.1007/BF00326291 . PubMed DOI
Schründer J, Meinhardt F. An extranuclear expression system for analysis of cytoplasmic promoters of yeast linear killer plasmids. Plasmid. 1995;33(2):139–151. 10.1006/plas.1995.1015 . PubMed DOI
Schickel J, Helmig C, Meinhardt F. Kluyveromyces lactis killer system: analysis of cytoplasmic promoters of the linear plasmids. Nucleic Acids Res. 1996;24(10):1879–1886. 10.1093/nar/24.10.1879 . PubMed DOI PMC
Schründer J, Gunge N, Meinhardt F. Extranuclear expression of the bacterial xylose isomerase (xylA) and the UDP-glucose dehydrogenase (hasB) genes in yeast with Kluyveromyces lactis linear killer plasmids as vectors. Curr Microbiol. 1996;33(5):323–330. 10.1007/s002849900122 . PubMed DOI
Klassen R, Tontsidou L, Larsen M, Meinhardt F. Genome organization of the linear cytoplasmic element pPE1B from Pichia etchellsii. Yeast. 2001;18(10):953–961. 10.1002/yea.751 . PubMed DOI
Schaffrath R, Soond SM, Meacock PA. The DNA and RNA polymerase genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. Microbiology. 1995;141:2591–2599. 10.1099/13500872-141-10-2591 . PubMed DOI
Schaffrath R, Meinhardt F, Meacock PA. ORF7 of yeast plasmid pGKL2: analysis of gene expression in vivo. Curr Genet. 1997;31(2):190–192. 10.1007/s002940050195 . PubMed DOI
Jeske S, Tiggemann M, Meinhardt F. Yeast autonomous linear plasmid pGKL2: ORF9 is an actively transcribed essential gene with multiple transcription start points. FEMS Microbiol Lett. 2006;255(2):321–327. 10.1111/j.1574-6968.2005.00082.x . PubMed DOI
Wilson DW, Meacock PA. Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Res. 1988;16(16):8097–8112. . PubMed PMC
Ruprich-Robert G, Thuriaux P. Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases. Nucleic Acids Res. 2010;38(14):4559–4569. 10.1093/nar/gkq201 . PubMed DOI PMC
Schaffrath R, Soond SM, Meacock PA. Cytoplasmic gene expression in yeast: A plasmid-encoded transcription system in Kluyveromyces lactis. Biochem Soc Trans. 1995;23(1):S128 . PubMed
Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989;17(12):4713–4730. 10.1093/nar/17.12.4713 . PubMed DOI PMC
Deng L, Shuman S. Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Gene Dev. 1998;12(4):538–546. 10.1101/Gad.12.4.538 . PubMed DOI PMC
Broyles SS, Li J, Moss B. Promoter DNA Contacts Made by the Vaccinia Virus Early Transcription Factor. J Biol Chem. 1991;266(23):15539–15544. . PubMed
Larsen M, Gunge N, Meinhardt F. Kluyveromyces lactis killer plasmid pGKL2: Evidence for a viral-like capping enzyme encoded by ORF3. Plasmid. 1998;40(3):243–246. 10.1006/plas.1998.1367 . PubMed DOI
Mao XD, Shuman S. Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. Identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer. J Biol Chem. 1994;269(39):24472–24479. . PubMed
Schwer B, Hausmann S, Schneider S, Shuman S. Poxvirus mRNA cap methyltransferase—Bypass of the requirement for the stimulatory subunit by mutations in the catalytic subunit and evidence for intersubunit allostery. J Biol Chem. 2006;281(28):18953–18960. 10.1074/jbc.M602867200 . PubMed DOI
Luo Y, Mao XD, Deng L, Cong PJ, Shuman S. The D1 and D12 Subunits Are Both Essential for the Transcription Termination Factor Activity of Vaccinia Virus Capping Enzyme. J Virol. 1995;69(6):3852–3856. . PubMed PMC
Tiggemann M, Jeske S, Larsen M, Meinhardt F. Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Yeast. 2001;18(9):815–825. 10.1002/yea.728 . PubMed DOI
Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F. Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression. Plos Genet. 2015;11(5):e1005005 10.1371/journal.pgen.1005005 . PubMed DOI PMC
Cormack BP, Bertram G, Egerton M, Gow NAR, Falkow S, Brown AJP. Yeast-enhanced green fluorescent protein (yEGFP): A reporter of gene expression in Candida albicans. Microbiology. 1997;143:303–311. 10.1099/00221287-143-2-303 . PubMed DOI
Tokunaga M, Kawamura A, Hishinuma F. Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res. 1989;17(9):3435–3446. 10.1093/nar/17.9.3435 . PubMed DOI PMC
Vopalensky V, Sykora M, Masek T, Pospisek M. Messenger RNAs transcribed from yeast linear cytoplasmic plasmids possess unconventional 5' and 3' UTRs and suggest a novel mechanism of translation. bioRxiv. 2018. 10.1101/325316 DOI
Bertholet C, Van Meir E, ten Heggeler-Bordier B, Wittek R. Vaccinia Virus Produces Late mRNAs by Discontinuous Synthesis. Cell. 1987;50(2):153–162. 10.1016/0092-8674(87)90211-X . PubMed DOI PMC
Schwer B, Visca P, Vos JC, Stunnenberg HG. Discontinuous Transcription or RNA Processing of Vaccinia Virus Late Messengers Results in a 5' Poly(A) Leader. Cell. 1987;50(2):163–169. 10.1016/0092-8674(87)90212-1 . PubMed DOI PMC
Davison AJ, Moss B. Structure of Vaccinia Virus Late Promoters. J Mol Biol. 1989;210(4):771–784. 10.1016/0022-2836(89)90108-3 . PubMed DOI
Schwer B, Stunnenberg HG. Vaccinia virus late transcripts generated in vitro have a poly(A) head. EMBO J. 1988;7(4):1183–1190. 10.1002/j.1460-2075.1988.tb02929.x . PubMed DOI PMC
Yang ZL, Martens CA, Bruno DP, Porcella SF, Moss B. Pervasive Initiation and 3'-End Formation of Poxvirus Postreplicative RNAs. J Biol Chem. 2012;287(37):31050–31060. 10.1074/jbc.M112.390054 . PubMed DOI PMC
Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010;11:129 10.1186/1471-2105-11-129 . PubMed DOI PMC
Kwapisz M, Beckouet F, Thuriaux P. Early evolution of eukaryotic DNA-dependent RNA polymerases. Trends Genet. 2008;24(5):211–215. 10.1016/j.tig.2008.02.002 . PubMed DOI
Rohe M, Schründer J, Tudzynski P, Meinhardt F. Phylogenetic-Relationships of Linear, Protein-Primed Replicating Genomes. Curr Genet. 1992;21(2):173–176. 10.1007/Bf00318478 . PubMed DOI
Iyer LM, Aravind L. Insights from the architecture of the bacterial transcription apparatus. J Struct Biol. 2012;179(3):299–319. 10.1016/j.jsb.2011.12.013 . PubMed DOI PMC
Lane WJ, Darst SA. Molecular Evolution of Multisubunit RNA Polymerases: Sequence Analysis. J Mol Biol. 2010;395(4):671–685. 10.1016/j.jmb.2009.10.062 . PubMed DOI PMC
Yutin N, Koonin EV. Hidden evolutionary complexity of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes. Virol J. 2012;9:161 10.1186/1743-422X-9-161 . PubMed DOI PMC
Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B. Genome-Wide Analysis of the 5' and 3' Ends of Vaccinia Virus Early mRNAs Delineates Regulatory Sequences of Annotated and Anomalous Transcripts. J Virol. 2011;85(12):5897–5909. 10.1128/JVI.00428-11 . PubMed DOI PMC
McCracken S, Fong N, Rosonina E, Yankulov K, Brothers G, Siderovski D, et al. 5'-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Gene Dev. 1997;11(24):3306–3318. 10.1101/gad.11.24.3306 . PubMed DOI PMC
Luo Y, Hagler J, Shuman S. Discrete Functional Stages of Vaccinia Virus Early Transcription during a Single Round of RNA Synthesis in Vitro. J Biol Chem. 1991;266(20):13303–13310. . PubMed
Hagler J, Shuman S. A freeze-frame view of eukaryotic transcription during elongation and capping of nascent mRNA. Science. 1992;255(5047):983–986. 10.1126/science.1546295 . PubMed DOI
Mohamed MR, Niles EG. Interaction between nucleoside triphosphate phosphohydrolase I and the H4L subunit of the viral RNA polymerase is required for vaccinia virus early gene transcript release. J Biol Chem. 2000;275(33):25798–25804. 10.1074/jbc.M002250200 . PubMed DOI
Yang ZL, Moss B. Interaction of the Vaccinia Virus RNA Polymerase-Associated 94-Kilodalton Protein with the Early Transcription Factor. J Virol. 2009;83(23):12018–12026. 10.1128/JVI.01653-09 . PubMed DOI PMC
Ahn BY, Gershon PD, Moss B. RNA Polymerase-associated Protein Rap94 Confers Promoter Specificity for Initiating Transcription of Vaccinia Virus Early Stage Genes. J Biol Chem. 1994;269(10):7552–7557. . PubMed
Ahn BY, Jones EV, Moss B. Identification of the Vaccinia Virus Gene Encoding an 18-Kilodalton Subunit of RNA Polymerase and Demonstration of a 5' Poly(A) Leader on Its Early Transcript. J Virol. 1990;64(6):3019–3024. . PubMed PMC
Ink BS, Pickup DJ. Vaccinia virus directs the synthesis of early mRNAs containing 5' poly(A) sequences. Proc Natl Acad Sci U S A. 1990;87(4):1536–1540. 10.1073/pnas.87.4.1536 . PubMed DOI PMC
Shirokikh NE, Spirin AS. Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc Natl Acad Sci U S A. 2008;105(31):10738–10743. 10.1073/pnas.0804940105 . PubMed DOI PMC
Xia XH, MacKay V, Yao XQ, Wu JH, Miura F, Ito T, et al. Translation Initiation: A Regulatory Role for Poly(A) Tracts in Front of the AUG Codon in Saccharomyces cerevisiae. Genetics. 2011;189(2):469–478. 10.1534/genetics.111.132068 . PubMed DOI PMC
Baldick CJ Jr., Keck JG, Moss B. Mutational Analysis of the Core, Spacer, and Initiator Regions of Vaccinia Virus Intermediate-Class Promoters. J Virol. 1992;66(8):4710–4719. . PubMed PMC
Fritsch TE, Siqueira FM, Schrank IS. Intrinsic terminators in Mycoplasma hyopneumoniae transcription. BMC Genomics. 2015;16:273 10.1186/s12864-015-1468-6 . PubMed DOI PMC
Martin FH, Tinoco I Jr. DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 1980;8(10):2295–2299. 10.1093/nar/8.10.2295 . PubMed DOI PMC
d'Aubenton Carafa Y, Brody E, Thermes C. Prediction of Rho-independent Escherichia coli Transcription Terminators. A Statistical Analysis of their RNA Stem-Loop Structures. J Mol Biol. 1990;216(4):835–858. 10.1016/S0022-2836(99)80005-9 . PubMed DOI
Gusarov I, Nudler E. The Mechanism of Intrinsic Transcription Termination. Mol Cell. 1999;3(4):495–504. 10.1016/S1097-2765(00)80477-3 . PubMed DOI
Ray-Soni A, Bellecourt MJ, Landick R. Mechanisms of Bacterial Transcription Termination: All Good Things Must End. Annu Rev Biochem. 2016;85:319–347. 10.1146/annurev-biochem-060815-014844 . PubMed DOI
Tate J, Gollnick P. The role of vaccinia termination factor and cis-acting elements in vaccinia virus early gene transcription termination. Virology. 2015;485:179–188. 10.1016/j.virol.2015.05.008 . PubMed DOI
Hirtreiter A, Damsma GE, Cheung ACM, Klose D, Grohmann D, Vojnic E, et al. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res. 2010;38(12):4040–4051. 10.1093/nar/gkq135 . PubMed DOI PMC
Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature. 2007;448(7150):157–162. 10.1038/nature05932 . PubMed DOI
Naji S, Bertero MG, Spitalny P, Cramer P, Thomm M. Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement. Nucleic Acids Res. 2008;36(2):676–687. 10.1093/nar/gkm1086 . PubMed DOI PMC
Toulokhonov I, Landick R. The Role of the Lid Element in Transcription by E. coli RNA Polymerase. J Mol Biol. 2006;361(4):644–658. 10.1016/j.jmb.2006.06.071 . PubMed DOI
Kuznedelov K, Korzheva N, Mustaev A, Severinov K. Structure-based analysis of RNA polymerase function: the largest subunit's rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA-DNA hybrid length. EMBO J. 2002;21(6):1369–1378. 10.1093/emboj/21.6.1369 . PubMed DOI PMC
Kettenberger H, Armache KJ, Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell. 2004;16(6):955–965. 10.1016/j.molcel.2004.11.040 . PubMed DOI
Knutson BA, Broyles SS. Expansion of poxvirus RNA polymerase subunits sharing homology with corresponding subunits of RNA polymerase II. Virus Genes. 2008;36(2):307–311. 10.1007/s11262-008-0207-3 . PubMed DOI
Suhre K, Audic S, Claverie JM. Mimivirus gene promoters exhibit an unprecedented conservation among all eukaryotes. Proc Natl Acad Sci U S A. 2005;102(41):14689–14693. 10.1073/pnas.0506465102 . PubMed DOI PMC
Krupovic M, Koonin EV. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat Rev Microbiol. 2015;13(2):105–115. 10.1038/nrmicro3389 . PubMed DOI PMC
Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87–96. 10.1016/S0076-6879(02)50957-5 . PubMed DOI
Woods DR, Bevan EA. Studies on the Nature of Killer Factor Produced by Saccharomyces cerevisiae. J Gen Microbiol. 1968;51:115–126. 10.1099/00221287-51-1-115 . PubMed DOI
Pospíšek M, Palková Z. Microisolation of yeast nucleic acids on the microtitre plate without using lytic enzymes. Nucleic Acids Res. 1991;19(18):5083 10.1093/nar/19.18.5083 . PubMed DOI PMC
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856–2860. 10.1038/nprot.2006.468 . PubMed DOI
Lin RJ, Kim DH, Castanotto D, Westaway S, Rossi JJ. RNA preparation from yeast cells In: Krieg PA, editor. A Laboratory Guide to RNA: Isolation, Analysis, and Synthesis: Wiley-Liss, New York; 1996. p. 43–50.
Mašek T, Vopálenský V, Suchomelová P, Pospíšek M. Denaturing RNA electrophoresis in TAE agarose gels. Anal Biochem. 2005;336(1):46–50. 10.1016/j.ab.2004.09.010 . PubMed DOI
Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:W526–W531. 10.1093/nar/gkh468 . PubMed DOI PMC
Holm L, Rosenstrom P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 2010;38:W545–W549. 10.1093/nar/gkq366 PubMed DOI PMC
Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins. 2004;57(4):702–710. 10.1002/prot.20264 . PubMed DOI
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li WZ, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539 10.1038/msb.2011.75 . PubMed DOI PMC
Lefort V, Longueville JE, Gascuel O. SMS: Smart Model Selection in PhyML. Mol Biol Evol. 2017;34(9):2422–2424. 10.1093/molbev/msx149 . PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274. 10.1093/molbev/msu300 . PubMed DOI PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242–W245. 10.1093/nar/gkw290 . PubMed DOI PMC
Chang JM, Di Tommaso P, Lefort V, Gascuel O, Notredame C. TCS: a web server for multiple sequence alignment evaluation and phylogenetic reconstruction. Nucleic Acids Res. 2015;43(W1):W3–W6. 10.1093/nar/gkv310 . PubMed DOI PMC
The African Swine Fever Virus Transcriptome