The African Swine Fever Virus Transcriptome
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
WT 108877/B/15/Z
Wellcome Trust - United Kingdom
WT 207446/Z/17/Z
Wellcome Trust - United Kingdom
BBS/E/I/0007030
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/I/00007034
Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
BBS/E/I/0007031
Biotechnology and Biological Sciences Research Council - United Kingdom
WT 095598/Z/11/Z
Wellcome Trust - United Kingdom
PubMed
32075923
PubMed Central
PMC7163114
DOI
10.1128/jvi.00119-20
PII: JVI.00119-20
Knihovny.cz E-zdroje
- Klíčová slova
- African swine fever virus, NCLDV, RNA polymerases, RNA-seq, gene expression, promoters, transcription, transcription start site, virology, zoonotic infections,
- MeSH
- africký mor prasat prevence a kontrola MeSH
- aktivace transkripce genetika MeSH
- genetická transkripce genetika MeSH
- genom virový MeSH
- hemoragické horečky virové virologie MeSH
- prasata virologie MeSH
- sekvence aminokyselin MeSH
- Sus scrofa virologie MeSH
- terminace genetické transkripce MeSH
- transkriptom genetika MeSH
- virové proteiny genetika MeSH
- virus afrického moru prasat genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové proteiny MeSH
African swine fever virus (ASFV) causes hemorrhagic fever in domestic pigs, presenting the biggest global threat to animal farming in recorded history. Despite the importance of ASFV, little is known about the mechanisms and regulation of ASFV transcription. Using RNA sequencing methods, we have determined total RNA abundance, transcription start sites, and transcription termination sites at single-nucleotide resolution. This allowed us to characterize DNA consensus motifs of early and late ASFV core promoters, as well as a polythymidylate sequence determinant for transcription termination. Our results demonstrate that ASFV utilizes alternative transcription start sites between early and late stages of infection and that ASFV RNA polymerase (RNAP) undergoes promoter-proximal transcript slippage at 5' ends of transcription units, adding quasitemplated AU- and AUAU-5' extensions to mRNAs. Here, we present the first much-needed genome-wide transcriptome study that provides unique insight into ASFV transcription and serves as a resource to aid future functional analyses of ASFV genes which are essential to combat this devastating disease.IMPORTANCE African swine fever virus (ASFV) causes incurable and often lethal hemorrhagic fever in domestic pigs. In 2020, ASF presents an acute and global animal health emergency that has the potential to devastate entire national economies as effective vaccines or antiviral drugs are not currently available (according to the Food and Agriculture Organization of the United Nations). With major outbreaks ongoing in Eastern Europe and Asia, urgent action is needed to advance our knowledge about the fundamental biology of ASFV, including the mechanisms and temporal control of gene expression. A thorough understanding of RNAP and transcription factor function, and of the sequence context of their promoter motifs, as well as accurate knowledge of which genes are expressed when and the amino acid sequence of the encoded proteins, is direly needed for the development of antiviral drugs and vaccines.
Institute for Structural and Molecular Biology University College London London United Kingdom
Institute of Molecular Genetics Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Alonso C, Borca M, Dixon L, Revilla Y, Rodriguez F, Escribano JM, Consortium IR. 2018. ICTV virus taxonomy profile: Asfarviridae. J Gen Virol 99:613–614. doi:10.1099/jgv.0.001049. PubMed DOI
Koonin EV, Yutin N. 2010. Origin and evolution of eukaryotic large nucleo-cytoplasmic DNA viruses. Intervirology 53:284–292. doi:10.1159/000312913. PubMed DOI PMC
Yutin N, Koonin EV. 2012. Hidden evolutionary complexity of nucleo-cytoplasmic large DNA viruses of eukaryotes. Virol J 9:161. doi:10.1186/1743-422X-9-161. PubMed DOI PMC
Reteno DG, Benamar S, Khalil JB, Andreani J, Armstrong N, Klose T, Rossmann M, Colson P, Raoult D, La Scola B. 2015. Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. J Virol 89:6585–6594. doi:10.1128/JVI.00115-15. PubMed DOI PMC
Gogin A, Gerasimov V, Malogolovkin A, Kolbasov D. 2013. African swine fever in the North Caucasus region and the Russian Federation in years 2007–2012. Virus Res 173:198–203. doi:10.1016/j.virusres.2012.12.007. PubMed DOI
Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, Zhang S, Cao P, Li X, Tian K, Qiu H-J, Hu R. 2018. Emergence of African swine fever in China, 2018. Transbound Emerg Dis 65:1482–1484. doi:10.1111/tbed.12989. PubMed DOI
Dixon LK, Chapman DAG, Netherton CL, Upton C. 2013. African swine fever virus replication and genomics. Virus Res 173:3–14. doi:10.1016/j.virusres.2012.10.020. PubMed DOI
Kinyanyi D, Obiero G, Obiero GFO, Amwayi P, Mwaniki S, Wamalwa M. 2018. In silico structural and functional prediction of African swine fever virus protein-B263R reveals features of a TATA-binding protein. PeerJ 6:e4396. doi:10.7717/peerj.4396. PubMed DOI PMC
Rodriguez JM, Salas ML, Viñuela E. 1992. Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor SII in African swine fever virus. Virology 186:40–52. doi:10.1016/0042-6822(92)90059-x. PubMed DOI
Rodríguez JM, Salas ML. 2013. African swine fever virus transcription. Virus Res 173:15–28. doi:10.1016/j.virusres.2012.09.014. PubMed DOI
Broyles SS. 2003. Vaccinia virus transcription. J Gen Virol 84:2293–2303. doi:10.1099/vir.0.18942-0. PubMed DOI
Kollnberger SD, Gutierrez-Castañeda B, Foster-Cuevas M, Corteyn A, Parkhouse R. 2002. Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. J Gen Virol 83:1331–1342. doi:10.1099/0022-1317-83-6-1331. PubMed DOI
Yáñez RJ, Rodríguez JM, Nogal ML, Yuste L, Enríquez C, Rodriguez JF, Viñuela E. 1995. Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208:249–278. doi:10.1006/viro.1995.1149. PubMed DOI
Rodríguez JM, Moreno LT, Alejo A, Lacasta A, Rodríguez F, Salas ML. 2015. Genome sequence of African swine fever virus BA71, the virulent parental strain of the nonpathogenic and tissue-culture adapted BA71V. PLoS One 10:e0142889. doi:10.1371/journal.pone.0142889. PubMed DOI PMC
Almazán F, Rodríguez JM, Angulo A, Viñuela E, Rodriguez JF. 1993. Transcriptional mapping of a late gene coding for the p12 attachment protein of African swine fever virus. J Virol 67:553–556. doi:10.1128/JVI.67.1.553-556.1993. PubMed DOI PMC
Almazán F, Rodríguez JM, Andrés G, Pérez R, Viñuela E, Rodriguez JF. 1992. Transcriptional analysis of multigene family 110 of African swine fever virus. J Virol 66:6655–6667. doi:10.1128/JVI.66.11.6655-6667.1992. PubMed DOI PMC
Breese SS, DeBoer CJ. 1966. Electron microscope observations of African swine fever virus in tissue culture cells. Virology 28:420–428. doi:10.1016/0042-6822(66)90054-7. PubMed DOI
Oda KI, Joklik WK. 1967. Hybridization and sedimentation studies on “early” and “late” vaccinia messenger RNA. J Mol Biol 27:395–419. doi:10.1016/0022-2836(67)90047-2. PubMed DOI
Zhang X, Kiechle FL. 2004. Cytosine arabinoside substitution decreases transcription factor-DNA binding element complex formation. Arch Pathol Lab Med 128:1364–1371. doi:10.1043/1543-2165(2004)128<1364:CASDTF>2.0.CO;2. PubMed DOI
Alejo A, Matamoros T, Guerra M, Andrés G. 2018. A proteomic atlas of the African swine fever virus particle. J Virol 92:e01293-18. doi:10.1128/JVI.01293-18. PubMed DOI PMC
Salas ML, Kuznar J, Viñuela E. 1981. Polyadenylation, methylation, and capping of the RNA synthesized in vitro by African swine fever virus. Virology 113:484–491. doi:10.1016/0042-6822(81)90176-8. PubMed DOI
Frouco G, Freitas FB, Coelho J, Leitão A, Martins C, Ferreira F. 2017. DNA-binding properties of African swine fever virus pA104R, a histone-like protein involved in viral replication and transcription. J Virol 91:e02498-16. doi:10.1128/JVI.02498-16. PubMed DOI PMC
Iyer LM, Balaji S, Koonin EV, Aravind L. 2006. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117:156–184. doi:10.1016/j.virusres.2006.01.009. PubMed DOI
Yutin N, Wolf YI, Raoult D, Koonin EV. 2009. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J 6:223. doi:10.1186/1743-422X-6-223. PubMed DOI PMC
García-Escudero R, Viñuela E. 2000. Structure of African swine fever virus late promoters: requirement of a TATA sequence at the initiation region. J Virol 74:8176–8182. doi:10.1128/jvi.74.17.8176-8182.2000. PubMed DOI PMC
Rodríguez JM, Salas ML, Viñuela E. 1996. Intermediate class of mRNAs in African swine fever virus. J Virol 70:8584–8589. doi:10.1128/JVI.70.12.8584-8589.1996. PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Yang Z, Martens CA, Bruno DP, Porcella SF, Moss B. 2012. Pervasive initiation and 3′-end formation of poxvirus postreplicative RNAs. J Biol Chem 287:31050–31060. doi:10.1074/jbc.M112.390054. PubMed DOI PMC
Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B. 2011. Genome-wide analysis of the 5′ and 3′ ends of vaccinia virus early mRNAs delineates regulatory sequences of annotated and anomalous transcripts. J Virol 85:5897–5909. doi:10.1128/JVI.00428-11. PubMed DOI PMC
Schoenberg DR, Maquat LE. 2009. Re-capping the message. Trends Biochem Sci 34:435–442. doi:10.1016/j.tibs.2009.05.003. PubMed DOI PMC
Mukherjee C, Patil DP, Kennedy BA, Bakthavachalu B, Bundschuh R, Schoenberg DR. 2012. Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability. Cell Rep 2:674–684. doi:10.1016/j.celrep.2012.07.011. PubMed DOI PMC
Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, Ponting CP, Stadler PF, Morris KV, Morillon A, Rozowsky JS, Gerstein MB, Wahlestedt C, Hayashizaki Y, Carninci P, Gingeras TR, Mattick JS. 2011. The reality of pervasive transcription. PLoS Biol 9:e1000625. doi:10.1371/journal.pbio.1000625. PubMed DOI PMC
Castelnuovo M, Stutz F. 2015. Role of chromatin, environmental changes and single cell heterogeneity in non-coding transcription and gene regulation. Curr Opin Cell Biol 34:16–22. doi:10.1016/j.ceb.2015.04.011. PubMed DOI
Mirzakhanyan Y, Gershon PD. 2017. Multisubunit DNA-dependent RNA polymerases from vaccinia virus and other nucleocytoplasmic large-DNA viruses: impressions from the age of structure. Microbiol Mol Biol Rev 81:e00010-17. doi:10.1128/MMBR.00010-17. PubMed DOI PMC
Kim B, Nesvizhskii AI, Rani PG, Hahn S, Aebersold R, Ranish JA. 2007. The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proc Natl Acad Sci U S A 104:16068–16073. doi:10.1073/pnas.0704573104. PubMed DOI PMC
Awrey DE, Shimasaki N, Koth C, Weilbaecher R, Olmsted V, Kazanis S, Shan X, Arellano J, Arrowsmith CH, Kane CM, Edwards AM. 1998. Yeast transcript elongation factor (TFIIS), structure and function. II: RNA polymerase binding, transcript cleavage, and read-through. J Biol Chem 273:22595–22605. doi:10.1074/jbc.273.35.22595. PubMed DOI
Keßler C, Forth JH, Keil GM, Mettenleiter TC, Blome S, Karger A. 2018. The intracellular proteome of African swine fever virus. Sci Rep 8:14714. doi:10.1038/s41598-018-32985-z. PubMed DOI PMC
Upton C, Slack S, Hunter AL, Ehlers A, Roper RL, Rock DL. 2003. Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 77:7590–7600. doi:10.1128/jvi.77.13.7590-7600.2003. PubMed DOI PMC
Zhu Z, Meng G. 2019. ASFVdb: an integrative resource for genomics and proteomics analyses of African swine fever. bioRxiv 10.1101/670109. PubMed DOI PMC
Butler JEF, Kadonaga JT. 2002. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592. doi:10.1101/gad.1026202. PubMed DOI
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. doi:10.1093/nar/gkp335. PubMed DOI PMC
Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018. doi:10.1093/bioinformatics/btr064. PubMed DOI PMC
Davison AJ, Moss B. 1989. Structure of vaccinia virus early promoters. J Mol Biol 210:749–769. doi:10.1016/0022-2836(89)90107-1. PubMed DOI
Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B. 2010. Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc Natl Acad Sci U S A 107:11513–11518. doi:10.1073/pnas.1006594107. PubMed DOI PMC
Sýkora M, Pospíšek M, Novák J, Mrvová S, Krásný L, Vopálenský V. 2018. Transcription apparatus of the yeast virus-like elements: Architecture, function, and evolutionary origin. PLoS Pathog 14:e1007377. doi:10.1371/journal.ppat.1007377. PubMed DOI PMC
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble W. 2007. Quantifying similarity between motifs. Genome Biol 8:R24. doi:10.1186/gb-2007-8-2-r24. PubMed DOI PMC
Arimbasseri AG, Rijal K, Maraia RJ. 2013. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 5:e27639. doi:10.4161/trns.27369. PubMed DOI PMC
Chen K, Hu Z, Xia Z, Zhao D, Li W, Tyler JK. 2016. The overlooked fact: fundamental need for spike-in control for virtually all genome-wide analyses. Mol Cell Biol 36:662–667. doi:10.1128/MCB.00970-14. PubMed DOI PMC
Schwalb B, Michel M, Zacher B, Hauf KF, Demel C, Tresch A, Gagneur J, Cramer P. 2016. TT-seq maps the human transient transcriptome. Science 352:1225–1228. doi:10.1126/science.aad9841. PubMed DOI
Kuznar J, Salas ML, Viñuela E. 1980. DNA-dependent RNA polymerase in African swine fever virus. Virology 101:169–175. doi:10.1016/0042-6822(80)90493-6. PubMed DOI
Dunn LEM, Ivens A, Netherton CL, Chapman DAG, Beard PM. 2019. Identification of a functional small non-coding RNA encoded by African swine fever virus. bioRxiv 865147.
Kazmierczak MJ, Wiedmann M, Boor KJ. 2005. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 69:527–543. doi:10.1128/MMBR.69.4.527-543.2005. PubMed DOI PMC
Guglielmini J, Woo AC, Krupovic M, Forterre P, Gaia M. 2019. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc Natl Acad Sci U S A 116:19585–19592. doi:10.1073/pnas.1912006116. PubMed DOI PMC
Yáñez RJ, Rodríguez JM, Boursnell M, Rodriguez J, Viñuela E. 1993. Two putative African swine fever virus helicases similar to yeast “DEAH” pre-mRNA processing proteins and vaccinia virus ATPases D11L and D6R. Gene 134:161–174. doi:10.1016/0378-1119(93)90090-p. PubMed DOI
Hahn S. 2004. Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11:394–403. doi:10.1038/nsmb763. PubMed DOI PMC
Knutson BA, Liu X, Oh J, Broyles SS. 2006. Vaccinia virus intermediate and late promoter elements are targeted by the TATA-binding protein. J Virol 80:6784–6793. doi:10.1128/JVI.02705-05. PubMed DOI PMC
Broyles SS, Knutson BA. 2010. Poxvirus transcription. Future Virol 5:639–650. doi:10.2217/fvl.10.51. DOI
Yang Z, Reynolds SE, Martens CA, Bruno DP, Porcella SF, Moss B. 2011. Expression profiling of the intermediate and late stages of poxvirus replication. J Virol 85:9899–9908. doi:10.1128/JVI.05446-11. PubMed DOI PMC
Dhungel P, Cao S, Yang Z. 2017. The 5′-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation. PLoS Pathog 13:e1006602. doi:10.1371/journal.ppat.1006602. PubMed DOI PMC
Mulder J, Robertson ME, Seamons RA, Belsham GJ. 1998. Vaccinia virus protein synthesis has a low requirement for the intact translation initiation factor eIF4F, the cap-binding complex, within infected cells. J Virol 72:8813–8819. doi:10.1128/JVI.72.11.8813-8819.1998. PubMed DOI PMC
Shirokikh NE, Spirin AS. 2008. Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc Natl Acad Sci U S A 105:10738–10743. doi:10.1073/pnas.0804940105. PubMed DOI PMC
Kuehner JN, Pearson EL, Moore C. 2011. Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 12:283–294. doi:10.1038/nrm3098. PubMed DOI PMC
Santangelo TJ, Cubonová L, Skinner KM, Reeve JN. 2009. Archaeal intrinsic transcription termination in vivo. J Bacteriol 191:7102–7108. doi:10.1128/JB.00982-09. PubMed DOI PMC
Howard ST, Ray CA, Patel DD, Antczak JB, Pickup DJ. 1999. A 43-nucleotide RNA cis-acting element governs the site-specific formation of the 3′ end of a poxvirus late mRNA. Virology 255:190–204. doi:10.1006/viro.1998.9547. PubMed DOI
Shuman S, Moss B. 1988. Factor-dependent transcription termination by vaccinia virus RNA polymerase. Evidence that the cis-acting termination signal is in nascent RNA. J Biol Chem 263:6220–6225. PubMed
Freitas FB, Frouco G, Martins C, Ferreira F. 2019. The QP509L and Q706L superfamily II RNA helicases of African swine fever virus are required for viral replication, having non-redundant activities. Emerg Microbes Infect 8:291–302. doi:10.1080/22221751.2019.1578624. PubMed DOI PMC
Andrews S, Bittencourt S. 2010. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J. 2016. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44:W3–W10. doi:10.1093/nar/gkw343. PubMed DOI PMC
Gruening BA. 2104. Galaxy wrapper. https://usegalaxy.org/.
Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A, Galaxy Team. 2010. Manipulation of FASTQ data with Galaxy. Bioinformatics 26:1783–1785. doi:10.1093/bioinformatics/btq281. PubMed DOI PMC
Potter J, Zheng W, Lee J. 2003. Thermal stability and cDNA synthesis capability of Superscript III reverse transcriptase. Focus (Madison) 25:19–24.
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17:10. doi:10.14806/ej.17.1.200. DOI
Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033. PubMed DOI PMC
RStudio Team. 2016. RStudio: integrated development for R. http://www.rstudio.com/.
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. 2015. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121. doi:10.1038/nmeth.3252. PubMed DOI PMC
Thodberg M, Thieffry A, Vitting-Seerup K, Andersson R, Sandelin A. 2018. CAGEfightR: cap Analysis of Gene Expression (CAGE) in R/Bioconductor. bioRxiv 310623.
Thorvaldsdottir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. doi:10.1093/bib/bbs017. PubMed DOI PMC
Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA, Wagner L. 2003. Database resources of the National Center for Biotechnology. Nucleic Acids Res 31:28–33. doi:10.1093/nar/gkg033. PubMed DOI PMC
Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. doi:10.1093/bioinformatics/btu638. PubMed DOI PMC
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8. PubMed DOI PMC
Tu SL, Upton C. 2019. Bioinformatics for analysis of poxvirus genomes. Methods Mol Biol 2023:29–62. doi:10.1007/978-1-4939-9593-6_2. PubMed DOI
Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36. PubMed
Raney BJ, Dreszer TR, Barber GP, Clawson H, Fujita PA, Wang T, Nguyen N, Paten B, Aweig AS, Karolchik D, Kent WJ. 2014. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 30:1003–1005. doi:10.1093/bioinformatics/btt637. PubMed DOI PMC
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi:10.1093/bioinformatics/btp033. PubMed DOI PMC
Kettenberger H, Armache K-J, Cramer P. 2003. Architecture of the RNA Polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114:347–357. doi:10.1016/s0092-8674(03)00598-1. PubMed DOI
Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188–1190. doi:10.1101/gr.849004. PubMed DOI PMC
Schneider TD, Stephens RM. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100. doi:10.1093/nar/18.20.6097. PubMed DOI PMC
Andrés G, García-Escudero R, Viñuela E, Salas ML, Rodríguez JM. 2001. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. J Virol 75:6758–6768. doi:10.1128/JVI.75.15.6758-6768.2001. PubMed DOI PMC
NCBI Resource Coordinators. 2016. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44:D7–D19. doi:10.1093/nar/gkv1290. PubMed DOI PMC