Discovery and structural characterization of monkeypox virus methyltransferase VP39 inhibitors reveal similarities to SARS-CoV-2 nsp14 methyltransferase
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37080993
PubMed Central
PMC10116469
DOI
10.1038/s41467-023-38019-1
PII: 10.1038/s41467-023-38019-1
Knihovny.cz E-zdroje
- MeSH
- COVID-19 * MeSH
- infekce virem zika * MeSH
- lidé MeSH
- methyltransferasy metabolismus MeSH
- RNA virová genetika MeSH
- RNA MeSH
- SARS-CoV-2 genetika MeSH
- virové nestrukturální proteiny chemie MeSH
- virus opičích neštovic genetika metabolismus MeSH
- virus zika * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methyltransferasy MeSH
- RNA virová MeSH
- RNA MeSH
- virové nestrukturální proteiny MeSH
Monkeypox is a disease with pandemic potential. It is caused by the monkeypox virus (MPXV), a double-stranded DNA virus from the Poxviridae family, that replicates in the cytoplasm and must encode for its own RNA processing machinery including the capping machinery. Here, we present crystal structures of its 2'-O-RNA methyltransferase (MTase) VP39 in complex with the pan-MTase inhibitor sinefungin and a series of inhibitors that were discovered based on it. A comparison of this 2'-O-RNA MTase with enzymes from unrelated single-stranded RNA viruses (SARS-CoV-2 and Zika) reveals a conserved sinefungin binding mode, implicating that a single inhibitor could be used against unrelated viral families. Indeed, several of our inhibitors such as TO507 also inhibit the coronaviral nsp14 MTase.
Zobrazit více v PubMed
Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y. Prevention and treatment of monkeypox. Drugs. 2022;82:957–963. doi: 10.1007/s40265-022-01742-y. PubMed DOI PMC
Beer EM, Rao VB. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl. Trop. Dis. 2019;13:e0007791. doi: 10.1371/journal.pntd.0007791. PubMed DOI PMC
https://www.cdc.gov/poxvirus/monkeypox/index.html (2022).
Grimm C, Bartuli J, Fischer U. Cytoplasmic gene expression: lessons from poxviruses. Trends Biochem. Sci. 2022;47:892–902. doi: 10.1016/j.tibs.2022.04.010. PubMed DOI
Paterson BM, Rosenberg M. Efficient translation of prokaryotic mRNAs in a eukaryotic cell-free system requires addition of a cap structure. Nature. 1979;279:692–696. doi: 10.1038/279692a0. PubMed DOI
Both GW, Furuichi Y, Muthukrishnan S, Shatkin AJ. Ribosome binding to reovirus mRNA in protein synthesis requires 5’ terminal 7-methylguanosine. Cell. 1975;6:185–195. doi: 10.1016/0092-8674(75)90009-4. PubMed DOI
Mears HV, Sweeney TR. Better together: the role of IFIT protein-protein interactions in the antiviral response. J. Gen. Virol. 2018;99:1463–1477. doi: 10.1099/jgv.0.001149. PubMed DOI
Thoresen D, et al. The molecular mechanism of RIG-I activation and signaling. Immunol. Rev. 2021;304:154–168. doi: 10.1111/imr.13022. PubMed DOI PMC
Liu SW, Katsafanas GC, Liu R, Wyatt LS, Moss B. Poxvirus decapping enzymes enhance virulence by preventing the accumulation of dsRNA and the induction of innate antiviral responses. Cell Host Microbe. 2015;17:320–331. doi: 10.1016/j.chom.2015.02.002. PubMed DOI PMC
Georgana I, Sumner RP, Towers GJ, Maluquer de Motes C. Virulent poxviruses inhibit DNA sensing by preventing STING activation. J. Virol. 2018;92:e02145–17. doi: 10.1128/JVI.02145-17. PubMed DOI PMC
Shuman S. RNA capping: progress and prospects. RNA. 2015;21:735–737. doi: 10.1261/rna.049973.115. PubMed DOI PMC
Hyde JL, Diamond MS. Innate immune restriction and antagonism of viral RNA lacking 2-O methylation. Virology. 2015;479–480:66–74. doi: 10.1016/j.virol.2015.01.019. PubMed DOI PMC
Hodel AE, Gershon PD, Shi XN, Quiocho FA. The 1.85 angstrom structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell. 1996;85:247–256. doi: 10.1016/S0092-8674(00)81101-0. PubMed DOI
Krafcikova P, Silhan J, Nencka R, Boura E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 2020;11:3717. doi: 10.1038/s41467-020-17495-9. PubMed DOI PMC
Benoni R, et al. Substrate specificity of SARS-CoV-2 Nsp10-Nsp16 methyltransferase. Viruses. 2021;13:1722. doi: 10.3390/v13091722. PubMed DOI PMC
Hodel AE, Gershon PD, Quiocho FA. Structural basis for sequence-nonspecific recognition of 5’-capped mRNA by a cap-modifying enzyme. Mol. Cell. 1998;1:443–447. doi: 10.1016/S1097-2765(00)80044-1. PubMed DOI
Li Z, Lazaridis T. Water at biomolecular binding interfaces. Phys. Chem. Chem. Phys. 2007;9:573–581. doi: 10.1039/B612449F. PubMed DOI
Samways ML, Taylor RD, Macdonald HEB, Essex JW. Water molecules at protein-drug interfaces: computational prediction and analysis methods. Chem. Soc. Rev. 2021;50:9104–9120. doi: 10.1039/D0CS00151A. PubMed DOI
Otava T, et al. The structure-based design of SARS-CoV-2 nsp14 methyltransferase ligands yields nanomolar inhibitors. ACS Infect. Dis. 2021;7:2214–2220. doi: 10.1021/acsinfecdis.1c00131. PubMed DOI
Czarna A, et al. Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity. Structure. 2022;30:1050–1054 e1052. doi: 10.1016/j.str.2022.04.014. PubMed DOI PMC
Kmiec D, Kirchhoff F. Monkeypox: a new threat? Int J. Mol. Sci. 2022;23:7866. doi: 10.3390/ijms23147866. PubMed DOI PMC
Bunge EM, et al. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl. Trop. Dis. 2022;16:e0010141. doi: 10.1371/journal.pntd.0010141. PubMed DOI PMC
Rao, A. K. et al. Use of JYNNEOS Smallpox and Monkeypox Vaccine, Live, Nonreplicating for Preexposure Vaccination of Persons at Risk for Occupational Exposure to Orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices - United States, 2022. Mmwr-Morbid Mortal W.71, 734–742 (2022). PubMed PMC
Russo AT, et al. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications. Expert Rev. Anti Infect. Ther. 2021;19:331–344. doi: 10.1080/14787210.2020.1819791. PubMed DOI PMC
Decroly E, Ferron F, Lescar J, Canard B. Conventional and unconventional mechanisms for capping viral mRNA. Nat. Rev. Microbiol. 2011;10:51–65. doi: 10.1038/nrmicro2675. PubMed DOI PMC
Brecher M, et al. Identification and characterization of novel broad-spectrum inhibitors of the flavivirus methyltransferase. ACS Infect. Dis. 2015;1:340–349. doi: 10.1021/acsinfecdis.5b00070. PubMed DOI PMC
Lim SP, et al. Small molecule inhibitors that selectively block dengue virus methyltransferase. J. Biol. Chem. 2011;286:6233–6240. doi: 10.1074/jbc.M110.179184. PubMed DOI PMC
Devkota K, et al. Probing the SAM binding site of SARS-CoV-2 Nsp14 in vitro using SAM competitive inhibitors guides developing selective bisubstrate inhibitors. SLAS Disco. 2021;26:1200–1211. doi: 10.1177/24725552211026261. PubMed DOI PMC
Khalili Yazdi A, et al. A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complex. SLAS Disco. 2021;26:757–765. doi: 10.1177/24725552211008863. PubMed DOI PMC
Klima M, et al. Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16. Protein Sci. 2022;31:e4395. doi: 10.1002/pro.4395. PubMed DOI PMC
Ahmed-Belkacem R, et al. Potent inhibition of SARS-CoV-2 nsp14 N7-methyltransferase by sulfonamide-based bisubstrate analogues. J. Med Chem. 2022;65:6231–6249. doi: 10.1021/acs.jmedchem.2c00120. PubMed DOI
Dostalik P, et al. Structural analysis of the OC43 coronavirus 2’-O-RNA methyltransferase. J. Virol. 2021;95:e0046321. doi: 10.1128/JVI.00463-21. PubMed DOI PMC
Li F, et al. SS148 and WZ16 inhibit the activities of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses. Biochim. Biophys. Acta Gen. Subj. 2023;1867:130319. doi: 10.1016/j.bbagen.2023.130319. PubMed DOI PMC
Nencka R, et al. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nucleic Acids Res. 2022;50:635–650. doi: 10.1093/nar/gkab1279. PubMed DOI PMC
Hercik K, Brynda J, Nencka R, Boura E. Structural basis of Zika virus methyltransferase inhibition by sinefungin. Arch. Virol. 2017;162:2091–2096. doi: 10.1007/s00705-017-3345-x. PubMed DOI
Mueller, U. et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur. Phys. J. Plus130. 10.1140/epjp/i2015-15141-2, (2015).
Kabsch W. Xds. Acta Crystallogr. Sect. D. Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Hodel AE, Gershon PD, Shi XN, Wang SM, Quiocho FA. Specific protein recognition of an mRNA cap through its alkylated base. Nat. Struct. Biol. 1997;4:350–354. doi: 10.1038/nsb0597-350. PubMed DOI
McCoy AJ, et al. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40:658–674. doi: 10.1107/S0021889807021206. PubMed DOI PMC
Liebschner D, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D. 2019;75:861–877. doi: 10.1107/S2059798319011471. PubMed DOI PMC
Afonine PV, et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D. 2018;74:531–544. doi: 10.1107/S2059798318006551. PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. Sect. D. Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Baranowski MR, et al. Synthesis of fluorophosphate nucleotide analogues and their characterization as tools for (1)(9)F NMR studies. J. Org. Chem. 2015;80:3982–3997. doi: 10.1021/acs.joc.5b00337. PubMed DOI
Structure of monkeypox virus poxin: implications for drug design