Structure of SARS-CoV-2 MTase nsp14 with the inhibitor STM957 reveals inhibition mechanism that is shared with a poxviral MTase VP39
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39188530
PubMed Central
PMC11345338
DOI
10.1016/j.yjsbx.2024.100109
PII: S2590-1524(24)00014-X
Knihovny.cz E-zdroje
- Klíčová slova
- Crystal structure, Inhibitor, Methyltransferase,
- Publikační typ
- časopisecké články MeSH
Nsp14 is an RNA methyltransferase (MTase) encoded by all coronaviruses. In fact, many viral families, including DNA viruses, encode MTases that catalyze the methylation of the RNA precap structure, resulting in fully capped viral RNA. This capping is crucial for efficient viral RNA translation, stability, and immune evasion. Our previous research identified nsp14 inhibitors based on the chemical scaffold of its methyl donor - the S-adenosyl methionine (SAM) - featuring a modified adenine base and a substituted arylsulfonamide. However, the binding mode of these inhibitors was based only on docking experiments. To uncover atomic details of nsp14 inhibition we solved the crystal structure of nsp14 bound to STM957. The structure revealed the atomic details of nsp14 inhibition such that the 7-deaza-adenine moiety of STM957 forms specific interactions with Tyr368, Ala353, and Phe367, while the arylsulfonamide moiety engages with Asn388 and Phe506. The large aromatic substituent at the 7-deaza position displaces a network of water molecules near the adenine base. Surprisingly, this was recently observed in the case of an unrelated monkeypox MTase VP39, where the 7-deaza modified SAH analogs also displaced water molecules from the vicinity of the active site.
Zobrazit více v PubMed
Afonine P.V., Grosse-Kunstleve R.W., Echols N., Headd J.J., Moriarty N.W., Mustyakimov M., Terwilliger T.C., Urzhumtsev A., Zwart P.H., Adams P.D. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2012;68:352–367. PubMed PMC
Ahmed-Belkacem R., Hausdorff M., Delpal A., Sutto-Ortiz P., Colmant A.M.G., Touret F., Ogando N.S., Snijder E.J., Canard B., Coutard B., Vasseur J.J., Decroly E., Debart F. Potent inhibition of SARS-CoV-2 nsp14 N7-methyltransferase by sulfonamide-based bisubstrate analogues. J. Med. Chem. 2022;65:6231–6249. PubMed
Beachboard D.C., Horner S.M. Innate immune evasion strategies of DNA and RNA viruses. Curr. Opin. Microbiol. 2016;32:113–119. PubMed PMC
Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathogens. 2010;6:e1000863. PubMed PMC
Brisse M., Ly H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front. Immunol. 2019;10:1586. PubMed PMC
Debreczeni J.E., Emsley P. Handling ligands with Coot. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2012;68:425–430. PubMed PMC
Decroly E., Debarnot C., Ferron F., Bouvet M., Coutard B., Imbert I., Gluais L., Papageorgiou N., Sharff A., Bricogne G., Ortiz-Lombardia M., Lescar J., Canard B. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathogens. 2011;7:e1002059. PubMed PMC
Dostalik P., Krafcikova P., Silhan J., Kozic J., Chalupska D., Chalupsky K., Boura E. Structural analysis of the OC43 Coronavirus 2 '-O-RNA methyltransferase. J. Virol. 2021;95 PubMed PMC
Fensterl V., Sen G.C. Interferon-induced Ifit proteins: their role in viral pathogenesis. J. Virol. 2015;89:2462–2468. PubMed PMC
Imprachim N., Yosaatmadja Y., Newman J.A. Crystal structures and fragment screening of SARS-CoV-2 NSP14 reveal details of exoribonuclease activation and mRNA capping and provide starting points for antiviral drug development. Nucleic Acids Res. 2023;51:475–487. PubMed PMC
Jung, E.K.Y., Soto-Acosta, R., Xie, J.S., Wilson, D.J., Dreis, C.D., Majima, R., Edwards, T.C., Geraghty, R.J., Chen, L.Q., 2022. Bisubstate Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 Nsp14 Methyltransferase. Acs Med Chem Lett. PubMed PMC
Kabsch W. Xds. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2010;66:125–132. PubMed PMC
Kottur J., Rechkoblit O., Quintana-Feliciano R., Sciaky D., Aggarwal A.K. High-resolution structures of the SARS-CoV-2 N7-methyltransferase inform therapeutic development. Nat. Struct. Mol. Biol. 2022;29:850–853. PubMed PMC
Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J., Moriarty N.W., Oeffner R.D., Poon B.K., Prisant M.G., Read R.J., Richardson J.S., Richardson D.C., Sammito M.D., Sobolev O.V., Stockwell D.H., Terwilliger T.C., Urzhumtsev A.G., Videau L.L., Williams C.J., Adams P.D. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D. 2019;75:861–877. PubMed PMC
McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. Phaser crystallographic software. J. Appl. Cryst. 2007;40:658–674. PubMed PMC
Meade N., DiGiuseppe S., Walsh D. Translational control during poxvirus infection. Wiley Interdiscip. Rev. RNA. 2019;10:e1515. PubMed PMC
Mueller U., Forster R., Hellmig M., Huschmann F.U., Kastner A., Malecki P., Puhringer S., Rower M., Sparta K., Steffien M., Uhlein M., Wilk P., Weiss M.S. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur. Phys. J. plus. 2015;130
Nencka R., Silhan J., Klima M., Otava T., Kocek H., Krafcikova P., Boura E. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nucleic Acids Res. 2022;50:635–650. PubMed PMC
Nigam, A., Hurley, M.F., Lu, F., Konkoľová, E., Klima, M., Trylčová, J., Pollice, R., Cinaroglu, S.S., Levin-Konigsberg, R., Handjaya, J., 2024. Application of Established Computational Techniques to Identify Potential SARS-CoV-2 Nsp14-MTase Inhibitors in Low Data Regimes. Digital Discovery.
Otava T., Sala M., Li F., Fanfrlik J., Devkota K., Perveen S., Chau I., Pakarian P., Hobza P., Vedadi M., Boura E., Nencka R. The structure-based design of SARS-CoV-2 nsp14 methyltransferase ligands yields nanomolar inhibitors. ACS Infect. Dis. 2021;7:2214–2220. PubMed
Shuman S. RNA capping: progress and prospects. Rna. 2015;21:735–737. PubMed PMC
Shuman S., Hurwitz J. Mechanism of messenger-rna capping by vaccinia virus guanylyltransferase - characterization of an enzyme-guanylate intermediate. P. Natl. Acad. Sci.-Biol. 1981;78:187–191. PubMed PMC
Silhan J., Klima M., Otava T., Skvara P., Chalupska D., Chalupsky K., Kozic J., Nencka R., Boura E. Discovery and structural characterization of monkeypox virus methyltransferase VP39 inhibitors reveal similarities to SARS-CoV-2 nsp14 methyltransferase. Nat. Commun. 2023;14:2259. PubMed PMC
Skvara P., Chalupska D., Klima M., Kozic J., Silhan J., Boura E. Structural basis for RNA-cap recognition and methylation by the mpox methyltransferase VP39. Antiviral Res. 2023;216 PubMed
Sparta K.M., Krug M., Heinemann U., Mueller U., Weiss M.S. Xdsapp2.0. J. Appl. Cryst. 2016;49:1085–1092.
Stefek M., Chalupska D., Chalupsky K., Zgarbova M., Dvorakova A., Krafcikova P., Li A.S.M., Sala M., Dejmek M., Otava T., Chaloupecka E., Kozak J., Kozic J., Vedadi M., Weber J., Mertlikova-Kaiserova H., Nencka R. Rational design of highly potent SARS-CoV-2 nsp14 methyltransferase inhibitors. ACS Omega. 2023;8:27410–27418. PubMed PMC
Zgarbova M., Otava T., Silhan J., Nencka R., Weber J., Boura E. Inhibitors of mpox VP39 2'-O methyltransferase efficiently inhibit the monkeypox virus. Antiviral Res. 2023;218 PubMed
Structural basis for broad-spectrum binding of AT-9010 to flaviviral methyltransferases