Structure of SARS-CoV-2 MTase nsp14 with the inhibitor STM957 reveals inhibition mechanism that is shared with a poxviral MTase VP39

. 2024 Dec ; 10 () : 100109. [epub] 20240729

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39188530
Odkazy

PubMed 39188530
PubMed Central PMC11345338
DOI 10.1016/j.yjsbx.2024.100109
PII: S2590-1524(24)00014-X
Knihovny.cz E-zdroje

Nsp14 is an RNA methyltransferase (MTase) encoded by all coronaviruses. In fact, many viral families, including DNA viruses, encode MTases that catalyze the methylation of the RNA precap structure, resulting in fully capped viral RNA. This capping is crucial for efficient viral RNA translation, stability, and immune evasion. Our previous research identified nsp14 inhibitors based on the chemical scaffold of its methyl donor - the S-adenosyl methionine (SAM) - featuring a modified adenine base and a substituted arylsulfonamide. However, the binding mode of these inhibitors was based only on docking experiments. To uncover atomic details of nsp14 inhibition we solved the crystal structure of nsp14 bound to STM957. The structure revealed the atomic details of nsp14 inhibition such that the 7-deaza-adenine moiety of STM957 forms specific interactions with Tyr368, Ala353, and Phe367, while the arylsulfonamide moiety engages with Asn388 and Phe506. The large aromatic substituent at the 7-deaza position displaces a network of water molecules near the adenine base. Surprisingly, this was recently observed in the case of an unrelated monkeypox MTase VP39, where the 7-deaza modified SAH analogs also displaced water molecules from the vicinity of the active site.

Zobrazit více v PubMed

Afonine P.V., Grosse-Kunstleve R.W., Echols N., Headd J.J., Moriarty N.W., Mustyakimov M., Terwilliger T.C., Urzhumtsev A., Zwart P.H., Adams P.D. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2012;68:352–367. PubMed PMC

Ahmed-Belkacem R., Hausdorff M., Delpal A., Sutto-Ortiz P., Colmant A.M.G., Touret F., Ogando N.S., Snijder E.J., Canard B., Coutard B., Vasseur J.J., Decroly E., Debart F. Potent inhibition of SARS-CoV-2 nsp14 N7-methyltransferase by sulfonamide-based bisubstrate analogues. J. Med. Chem. 2022;65:6231–6249. PubMed

Beachboard D.C., Horner S.M. Innate immune evasion strategies of DNA and RNA viruses. Curr. Opin. Microbiol. 2016;32:113–119. PubMed PMC

Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathogens. 2010;6:e1000863. PubMed PMC

Brisse M., Ly H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front. Immunol. 2019;10:1586. PubMed PMC

Debreczeni J.E., Emsley P. Handling ligands with Coot. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2012;68:425–430. PubMed PMC

Decroly E., Debarnot C., Ferron F., Bouvet M., Coutard B., Imbert I., Gluais L., Papageorgiou N., Sharff A., Bricogne G., Ortiz-Lombardia M., Lescar J., Canard B. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-O-methyltransferase nsp10/nsp16 complex. PLoS Pathogens. 2011;7:e1002059. PubMed PMC

Dostalik P., Krafcikova P., Silhan J., Kozic J., Chalupska D., Chalupsky K., Boura E. Structural analysis of the OC43 Coronavirus 2 '-O-RNA methyltransferase. J. Virol. 2021;95 PubMed PMC

Fensterl V., Sen G.C. Interferon-induced Ifit proteins: their role in viral pathogenesis. J. Virol. 2015;89:2462–2468. PubMed PMC

Imprachim N., Yosaatmadja Y., Newman J.A. Crystal structures and fragment screening of SARS-CoV-2 NSP14 reveal details of exoribonuclease activation and mRNA capping and provide starting points for antiviral drug development. Nucleic Acids Res. 2023;51:475–487. PubMed PMC

Jung, E.K.Y., Soto-Acosta, R., Xie, J.S., Wilson, D.J., Dreis, C.D., Majima, R., Edwards, T.C., Geraghty, R.J., Chen, L.Q., 2022. Bisubstate Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 Nsp14 Methyltransferase. Acs Med Chem Lett. PubMed PMC

Kabsch W. Xds. Acta Crystallogr. Sect. D, Biol. Crystallogr. 2010;66:125–132. PubMed PMC

Kottur J., Rechkoblit O., Quintana-Feliciano R., Sciaky D., Aggarwal A.K. High-resolution structures of the SARS-CoV-2 N7-methyltransferase inform therapeutic development. Nat. Struct. Mol. Biol. 2022;29:850–853. PubMed PMC

Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J., Moriarty N.W., Oeffner R.D., Poon B.K., Prisant M.G., Read R.J., Richardson J.S., Richardson D.C., Sammito M.D., Sobolev O.V., Stockwell D.H., Terwilliger T.C., Urzhumtsev A.G., Videau L.L., Williams C.J., Adams P.D. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D. 2019;75:861–877. PubMed PMC

McCoy A.J., Grosse-Kunstleve R.W., Adams P.D., Winn M.D., Storoni L.C., Read R.J. Phaser crystallographic software. J. Appl. Cryst. 2007;40:658–674. PubMed PMC

Meade N., DiGiuseppe S., Walsh D. Translational control during poxvirus infection. Wiley Interdiscip. Rev. RNA. 2019;10:e1515. PubMed PMC

Mueller U., Forster R., Hellmig M., Huschmann F.U., Kastner A., Malecki P., Puhringer S., Rower M., Sparta K., Steffien M., Uhlein M., Wilk P., Weiss M.S. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur. Phys. J. plus. 2015;130

Nencka R., Silhan J., Klima M., Otava T., Kocek H., Krafcikova P., Boura E. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nucleic Acids Res. 2022;50:635–650. PubMed PMC

Nigam, A., Hurley, M.F., Lu, F., Konkoľová, E., Klima, M., Trylčová, J., Pollice, R., Cinaroglu, S.S., Levin-Konigsberg, R., Handjaya, J., 2024. Application of Established Computational Techniques to Identify Potential SARS-CoV-2 Nsp14-MTase Inhibitors in Low Data Regimes. Digital Discovery.

Otava T., Sala M., Li F., Fanfrlik J., Devkota K., Perveen S., Chau I., Pakarian P., Hobza P., Vedadi M., Boura E., Nencka R. The structure-based design of SARS-CoV-2 nsp14 methyltransferase ligands yields nanomolar inhibitors. ACS Infect. Dis. 2021;7:2214–2220. PubMed

Shuman S. RNA capping: progress and prospects. Rna. 2015;21:735–737. PubMed PMC

Shuman S., Hurwitz J. Mechanism of messenger-rna capping by vaccinia virus guanylyltransferase - characterization of an enzyme-guanylate intermediate. P. Natl. Acad. Sci.-Biol. 1981;78:187–191. PubMed PMC

Silhan J., Klima M., Otava T., Skvara P., Chalupska D., Chalupsky K., Kozic J., Nencka R., Boura E. Discovery and structural characterization of monkeypox virus methyltransferase VP39 inhibitors reveal similarities to SARS-CoV-2 nsp14 methyltransferase. Nat. Commun. 2023;14:2259. PubMed PMC

Skvara P., Chalupska D., Klima M., Kozic J., Silhan J., Boura E. Structural basis for RNA-cap recognition and methylation by the mpox methyltransferase VP39. Antiviral Res. 2023;216 PubMed

Sparta K.M., Krug M., Heinemann U., Mueller U., Weiss M.S. Xdsapp2.0. J. Appl. Cryst. 2016;49:1085–1092.

Stefek M., Chalupska D., Chalupsky K., Zgarbova M., Dvorakova A., Krafcikova P., Li A.S.M., Sala M., Dejmek M., Otava T., Chaloupecka E., Kozak J., Kozic J., Vedadi M., Weber J., Mertlikova-Kaiserova H., Nencka R. Rational design of highly potent SARS-CoV-2 nsp14 methyltransferase inhibitors. ACS Omega. 2023;8:27410–27418. PubMed PMC

Zgarbova M., Otava T., Silhan J., Nencka R., Weber J., Boura E. Inhibitors of mpox VP39 2'-O methyltransferase efficiently inhibit the monkeypox virus. Antiviral Res. 2023;218 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural basis for broad-spectrum binding of AT-9010 to flaviviral methyltransferases

. 2025 Feb 20 ; 170 (3) : 61. [epub] 20250220

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...