Ebselen derivatives inhibit SARS-CoV-2 replication by inhibition of its essential proteins: PLpro and Mpro proteases, and nsp14 guanine N7-methyltransferase
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 GM115568
NIGMS NIH HHS - United States
R01 GM128731
NIGMS NIH HHS - United States
PubMed
37280236
PubMed Central
PMC10242237
DOI
10.1038/s41598-023-35907-w
PII: 10.1038/s41598-023-35907-w
Knihovny.cz E-zdroje
- MeSH
- antivirové látky farmakologie metabolismus MeSH
- COVID-19 * MeSH
- cysteinové endopeptidasy metabolismus MeSH
- inhibitory proteas farmakologie MeSH
- lidé MeSH
- methyltransferasy MeSH
- proteasy MeSH
- SARS-CoV-2 * metabolismus MeSH
- simulace molekulového dockingu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antivirové látky MeSH
- cysteinové endopeptidasy MeSH
- ebselen MeSH Prohlížeč
- inhibitory proteas MeSH
- methyltransferasy MeSH
- proteasy MeSH
Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.
Centre of New Technologies University of Warsaw Banacha 2C 02 097 Warsaw Poland
Institute of Molecular Medicine University of Lübeck Ratzeburger Allee 160 23562 Lübeck Germany
National Medicines Institute Ul Chełmska 30 34 00 725 Warsaw Poland
Zobrazit více v PubMed
Wang C, et al. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–473. doi: 10.1016/S0140-6736(20)30185-9. PubMed DOI PMC
Wu F, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC
Andersen KG, et al. The proximal origin of SARS-CoV-2. Nat. Med. 2020;26(4):450–452. doi: 10.1038/s41591-020-0820-9. PubMed DOI PMC
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020;20(5):533–534. doi: 10.1016/S1473-3099(20)30120-1. PubMed DOI PMC
Harvey WT, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021;19(7):409–424. doi: 10.1038/s41579-021-00573-0. PubMed DOI PMC
Heinz FX, Stiasny K. Distinguishing features of current COVID-19 vaccines: Knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines. 2021;6(1):104. doi: 10.1038/s41541-021-00369-6. PubMed DOI PMC
Zumla A, et al. Coronaviruses—Drug discovery and therapeutic options. Nat. Rev. Drug Discov. 2016;15(5):327–347. doi: 10.1038/nrd.2015.37. PubMed DOI PMC
Elfiky AA. Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020;253:117592. doi: 10.1016/j.lfs.2020.117592. PubMed DOI PMC
Jin Z, et al. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–293. doi: 10.1038/s41586-020-2223-y. PubMed DOI
Kandeel M, Al-Nazawi M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci. 2020;251:117627. doi: 10.1016/j.lfs.2020.117627. PubMed DOI PMC
Khodadadi E, et al. Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19) Microb. Pathog. 2020;146:104241. doi: 10.1016/j.micpath.2020.104241. PubMed DOI PMC
Rameshrad M, et al. A comprehensive review on drug repositioning against coronavirus disease 2019 (COVID19) Naunyn Schmiedebergs Arch. Pharmacol. 2020;393(7):1137–1152. doi: 10.1007/s00210-020-01901-6. PubMed DOI PMC
Joshi S, Joshi M, Degani MS. Tackling SARS-CoV-2: Proposed targets and repurposed drugs. Future Med. Chem. 2020;12(17):1579–1601. doi: 10.4155/fmc-2020-0147. PubMed DOI PMC
Beigel JH, et al. Remdesivir for the treatment of Covid-19—Final report. N. Engl. J. Med. 2020;383(19):1813–1826. doi: 10.1056/NEJMoa2007764. PubMed DOI PMC
WHOST Consortium Repurposed antiviral drugs for Covid-19—Interim WHO solidarity trial results. N. Engl. J. Med. 2021;384(6):497–511. doi: 10.1056/NEJMoa2023184. PubMed DOI PMC
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015;1282:1–23. doi: 10.1007/978-1-4939-2438-7_1. PubMed DOI PMC
Hilgenfeld R. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014;281(18):4085–4096. doi: 10.1111/febs.12936. PubMed DOI PMC
Zhang L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020;368(6489):409–412. doi: 10.1126/science.abb3405. PubMed DOI PMC
Anand K, et al. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science. 2003;300(5626):1763–1767. doi: 10.1126/science.1085658. PubMed DOI
Fan K, et al. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J. Biol. Chem. 2004;279(3):1637–1642. doi: 10.1074/jbc.M310875200. PubMed DOI PMC
Goyal B, Goyal D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Combin. Sci. 2020;22(6):297–305. doi: 10.1021/acscombsci.0c00058. PubMed DOI
Rut W, et al. SARS-CoV-2 M(pro) inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 2021;17(2):222–228. doi: 10.1038/s41589-020-00689-z. PubMed DOI
Yang H, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 2005;3(10):e324. doi: 10.1371/journal.pbio.0030324. PubMed DOI PMC
Freitas BT, et al. Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect. Dis. 2020;6(8):2099–2109. doi: 10.1021/acsinfecdis.0c00168. PubMed DOI
Klemm T, et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020;39(18):e106275. doi: 10.15252/embj.2020106275. PubMed DOI PMC
Rut W, et al. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug design. Sci. Adv. 2020;6(42):eabd4596. doi: 10.1126/sciadv.abd4596. PubMed DOI PMC
Shin D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020;587(7835):657–662. doi: 10.1038/s41586-020-2601-5. PubMed DOI PMC
Lesser R, Weiß R. Über selenhaltige aromatische Verbindungen (VI) Ber. dtsch. Chem. Ges. A/B. 1924;57:1077–1082. doi: 10.1002/cber.19240570703. DOI
Mugesh G, du Mont WW, Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev. 2001;101(7):2125–2179. doi: 10.1021/cr000426w. PubMed DOI
Antony S, Bayse CA. Modeling the mechanism of the glutathione peroxidase mimic ebselen. Inorg. Chem. 2011;50(23):12075–12084. doi: 10.1021/ic201603v. PubMed DOI
Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: Mechanisms of action and targets of biological pathways. Mol. Biol. Rep. 2014;41(8):4865–4879. doi: 10.1007/s11033-014-3417-x. PubMed DOI
Sarma BK, Mugesh G. Antioxidant activity of the anti-inflammatory compound ebselen: A reversible cyclization pathway via selenenic and seleninic acid intermediates. Chemistry. 2008;14(34):10603–10614. doi: 10.1002/chem.200801258. PubMed DOI
Bhabak KP, Mugesh G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc. Chem. Res. 2010;43(11):1408–1419. doi: 10.1021/ar100059g. PubMed DOI
Morgenstern R, Cotgreave IA, Engman L. Determination of the relative contributions of the diselenide and selenol forms of ebselen in the mechanism of its glutathione peroxidase-like activity. Chem. Biol. Interact. 1992;84(1):77–84. doi: 10.1016/0009-2797(92)90122-2. PubMed DOI
Sands KN, Back TG. Key steps and intermediates in the catalytic mechanism for the reduction of peroxides by the antioxidant ebselen. Tetrahedron. 2018;74(38):4959–4967. doi: 10.1016/j.tet.2018.05.027. DOI
Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med. 1993;14(3):313–323. doi: 10.1016/0891-5849(93)90028-S. PubMed DOI
Wedding JL, et al. Investigation into the intracellular fates, speciation and mode of action of selenium-containing neuroprotective agents using XAS and XFM. Biochim. Biophys. Acta Gen. Subj. 2018;1862(11):2393–2404. doi: 10.1016/j.bbagen.2018.03.031. PubMed DOI
Weglarz-Tomczak E, et al. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci. Rep. 2021;11(1):3640. doi: 10.1038/s41598-021-83229-6. PubMed DOI PMC
Amporndanai K, et al. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat. Commun. 2021;12(1):3061. doi: 10.1038/s41467-021-23313-7. PubMed DOI PMC
Cao J, Forrest JC, Zhang X. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs. Antivir. Res. 2015;114:1–10. doi: 10.1016/j.antiviral.2014.11.010. PubMed DOI PMC
Mangiavacchi F, et al. Seleno-functionalization of quercetin improves the non-covalent inhibition of M(pro) and its antiviral activity in cells against SARS-CoV-2. Int. J. Mol. Sci. 2021;22(13):7048. doi: 10.3390/ijms22137048. PubMed DOI PMC
Kasprzyk R, et al. Identification and evaluation of potential SARS-CoV-2 antiviral agents targeting mRNA cap guanine N7-Methyltransferase. Antivir. Res. 2021;193:105142. doi: 10.1016/j.antiviral.2021.105142. PubMed DOI PMC
Chen Y, et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 2009;106(9):3484–3489. doi: 10.1073/pnas.0808790106. PubMed DOI PMC
Bouvet M, et al. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 2010;6(4):e1000863. doi: 10.1371/journal.ppat.1000863. PubMed DOI PMC
Dong H, Zhang B, Shi PY. Flavivirus methyltransferase: A novel antiviral target. Antivir. Res. 2008;80(1):1–10. doi: 10.1016/j.antiviral.2008.05.003. PubMed DOI PMC
Tong TR. Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infect. Disord. Drug Targets. 2009;9(2):223–245. doi: 10.2174/187152609787847659. PubMed DOI
Hartenian E, et al. The molecular virology of coronaviruses. J. Biol. Chem. 2020;295(37):12910–12934. doi: 10.1074/jbc.REV120.013930. PubMed DOI PMC
Malone B, et al. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol. 2022;23(1):21–39. doi: 10.1038/s41580-021-00432-z. PubMed DOI PMC
Sancineto L, et al. Design and synthesis of DiselenoBisBenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem. 2015;58(24):9601–9614. doi: 10.1021/acs.jmedchem.5b01183. PubMed DOI
Thenin-Houssier S, et al. Ebselen, a small-molecule capsid inhibitor of HIV-1 replication. Antimicrob. Agents Chemother. 2016;60(4):2195–2208. doi: 10.1128/AAC.02574-15. PubMed DOI PMC
Sartori G, et al. Antiviral action of diphenyl diselenide on herpes simplex virus 2 infection in female BALB/c mice. J. Cell. Biochem. 2016;117(7):1638–1648. doi: 10.1002/jcb.25457. PubMed DOI
Mukherjee S, et al. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chem. Biol. 2014;9(10):2393–2403. doi: 10.1021/cb500512z. PubMed DOI PMC
Simanjuntak Y, et al. Ebselen alleviates testicular pathology in mice with Zika virus infection and prevents its sexual transmission. PLoS Pathog. 2018;14(2):e1006854. doi: 10.1371/journal.ppat.1006854. PubMed DOI PMC
Zhao R, Holmgren A. A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase. J. Biol. Chem. 2002;277(42):39456–39462. doi: 10.1074/jbc.M206452200. PubMed DOI
Azeredo JB, Schwab RS, Braga AL. Synthesis of biologically active selenium-containing molecules from greener perspectives. Curr. Green Chem. 2016;3(1):51–67. doi: 10.2174/2213346103666160127003506. DOI
Balkrishna SJ, et al. An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Org. Biomol. Chem. 2014;12(8):1215–1219. doi: 10.1039/C4OB00027G. PubMed DOI
Balkrishna SJ, et al. Cu-catalyzed efficient synthetic methodology for ebselen and related Se-N heterocycles. Org. Lett. 2010;12(23):5394–5397. doi: 10.1021/ol102027j. PubMed DOI
Balkrishna SJ, Bhakuni BS, Kumar S. Copper catalyzed/mediated synthetic methodology for ebselen and related isoselenazolones. Tetrahedron. 2011;67(49):9565–9575. doi: 10.1016/j.tet.2011.09.141. DOI
Osajda M, Młochowski J. The reactions of 2-(chloroseleno)benzoyl chloride with nucleophiles. Tetrahedron. 2002;58(37):7531–7537. doi: 10.1016/S0040-4020(02)00789-5. DOI
Giurg M, et al. Reaction of bis[(2-chlorocarbonyl)phenyl] diselenide with phenols, aminophenols, and other amines towards diphenyl diselenides with antimicrobial and antiviral properties. Molecules. 2017;22(6):974. doi: 10.3390/molecules22060974. PubMed DOI PMC
Mlochowski J, et al. Synthesis and properties of 2-carboxyalkyl-1,2-benzisoselenazol-3(2H)-ones and related organoselenium compounds as nitric oxide synthase inhibitors and cytokine inducers. Liebigs Ann. 1996;1996(11):1751–1755. doi: 10.1002/jlac.199619961108. DOI
Giurg M, Syper L. Diaryl diselenides and related compounds as oxygen-transfer agents. Phosphorus Sulfur Silicon Relat. Elem. 2008;183(4):970–985. doi: 10.1080/10426500801900956. DOI
Piętka-Ottlik M, et al. Synthesis of new alkylated and methoxylated analogues of ebselen with antiviral and antimicrobial properties. ARKIVOC. 2017;2017(2):546–556. doi: 10.24820/ark.5550190.p009.797. DOI
Weglarz-Tomczak E, et al. Identification of methionine aminopeptidase 2 as a molecular target of the organoselenium drug ebselen and its derivatives/analogues: Synthesis, inhibitory activity and molecular modeling study. Bioorg. Med. Chem. Lett. 2016;26(21):5254–5259. doi: 10.1016/j.bmcl.2016.09.050. PubMed DOI
Bernatowicz P, et al. A 13C, 15N and 77Se NMR study of some seleno and diseleno azines and related compounds. Pol. J. Chem. 1997;71:441–445.
Pacuła AJ, Ścianowski J, Aleksandrzak KB. Highly efficient synthesis and antioxidant capacity of N-substituted benzisoselenazol-3(2H)-ones. RSC Adv. 2014;4(90):48959–48962. doi: 10.1039/C4RA08631G. DOI
Kasprzyk R, et al. Direct high-throughput screening assay for mRNA cap guanine-N7 methyltransferase activity. Chemistry. 2020;26(49):11266–11275. doi: 10.1002/chem.202001036. PubMed DOI PMC
Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch. Med. Res. 2020;51(5):384–387. doi: 10.1016/j.arcmed.2020.04.019. PubMed DOI PMC
Takayama K. In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol. Sci. 2020;41(8):513–517. doi: 10.1016/j.tips.2020.05.005. PubMed DOI PMC
Menendez CA, et al. Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease. Sci. Adv. 2020;6(37):eabd0345. doi: 10.1126/sciadv.abd0345. PubMed DOI PMC
Qiao Z, et al. The Mpro structure-based modifications of ebselen derivatives for improved antiviral activity against SARS-CoV-2 virus. Bioorg. Chem. 2021;117:105455. doi: 10.1016/j.bioorg.2021.105455. PubMed DOI PMC
Ma C, et al. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are nonspecific promiscuous SARS-CoV-2 main protease inhibitors. ACS Pharmacol. Transl. Sci. 2020;3(6):1265–1277. doi: 10.1021/acsptsci.0c00130. PubMed DOI PMC
Ma C, et al. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Acta Pharm. Sin. B. 2022;12(4):1636–1651. doi: 10.1016/j.apsb.2021.10.026. PubMed DOI PMC
Tan H, Ma C, Wang J. Invalidation of dieckol and 1,2,3,4,6-pentagalloylglucose (PGG) as SARS-CoV-2 main protease inhibitors and the discovery of PGG as a papain-like protease inhibitor. Med. Chem. Res. 2022;31(7):1147–1153. doi: 10.1007/s00044-022-02903-0. PubMed DOI PMC
Heilmann E, et al. A VSV-based assay quantifies coronavirus Mpro/3CLpro/Nsp5 main protease activity and chemical inhibition. Commun. Biol. 2022;5(1):391. doi: 10.1038/s42003-022-03277-0. PubMed DOI PMC
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol. 2021;95(4):1179–1226. doi: 10.1007/s00204-021-03003-5. PubMed DOI PMC
Suhail S, et al. Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: A review. Protein J. 2020;39(6):644–656. doi: 10.1007/s10930-020-09935-8. PubMed DOI PMC
Taylor EW, Radding W. Understanding selenium and glutathione as antiviral factors in COVID-19: Does the viral M(pro) protease target host selenoproteins and glutathione synthesis? Front. Nutr. 2020;7:143. doi: 10.3389/fnut.2020.00143. PubMed DOI PMC
Du L, et al. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication. Redox. Biol. 2021;48:102199. doi: 10.1016/j.redox.2021.102199. PubMed DOI PMC
Lynch E, Kil J. Development of ebselen, a glutathione peroxidase mimic, for the prevention and treatment of noise-induced hearing loss. Semin. Hear. 2009;30(01):047–055. doi: 10.1055/s-0028-1111106. DOI
Sharpley AL, et al. A phase 2a randomised, double-blind, placebo-controlled, parallel-group, add-on clinical trial of ebselen (SPI-1005) as a novel treatment for mania or hypomania. Psychopharmacology. 2020;237(12):3773–3782. doi: 10.1007/s00213-020-05654-1. PubMed DOI PMC
Yamaguchi T, et al. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke. 1998;29(1):12–17. doi: 10.1161/01.STR.29.1.12. PubMed DOI
Singh N, et al. A safe lithium mimetic for bipolar disorder. Nat. Commun. 2013;4:1332. doi: 10.1038/ncomms2320. PubMed DOI PMC
Granda J, et al. Synthesis of 7- and 8-functionalized 2-aminophenoxazinones via cyclocondensation of 2-aminophenols. Synthesis. 2015;47(21):3321–3332. doi: 10.1055/s-0034-1381011. DOI
Welter, A., Christiaens, L. & Wirtz-Peitz, F. Benzisoselenazolones and processes for the treatment of rheumatic and arthritic diseases using them (1983).
Młochowski J, et al. Aromatic and azaaromatic diselenides, benzisoselenazolones and related compounds as immunomodulators active in humans: Synthesis and properties. Liebigs Ann. Chem. 1993;1993(12):1239–1244. doi: 10.1002/jlac.1993199301201. DOI
Welter, A. et al. Diselenobis-benzoic acid amides of primary and secondary amines and processes for the treatment of diseases in humans caused by a cell injury (1989).
Kuppers J, et al. Convergent synthesis of two fluorescent ebselen-coumarin heterodimers. Pharmaceuticals (Basel) 2016;9(3):43. doi: 10.3390/ph9030043. PubMed DOI PMC
Chang TC, et al. Synthesis and biological evaluation of ebselen and its acyclic derivatives. Chem. Pharm. Bull. (Tokyo) 2003;51(12):1413–1416. doi: 10.1248/cpb.51.1413. PubMed DOI
Gustafsson TN, et al. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Biochim. Biophys. Acta. 2016;1860(6):1265–1271. doi: 10.1016/j.bbagen.2016.03.013. PubMed DOI
Wan, J. et al. Benzoselenazole ketone compound and application thereof and bactericide (2021).
Bender, C. O. et al. Use of small molecules for the treatment of Clostridiumdifficile toxicity (2015).
Garland M, et al. Covalent modifiers of botulinum neurotoxin counteract toxin persistence. ACS Chem. Biol. 2019;14(1):76–87. doi: 10.1021/acschembio.8b00937. PubMed DOI PMC
Xue X, et al. Production of authentic SARS-CoV M(pro) with enhanced activity: Application as a novel tag-cleavage endopeptidase for protein overproduction. J. Mol. Biol. 2007;366(3):965–975. doi: 10.1016/j.jmb.2006.11.073. PubMed DOI PMC