Structural and in Vivo Characterization of Tubastatin A, a Widely Used Histone Deacetylase 6 Inhibitor
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32435374
PubMed Central
PMC7236036
DOI
10.1021/acsmedchemlett.9b00560
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Tubastatin A, a tetrahydro-γ-carboline-capped selective HDAC6 inhibitor (HDAC6i), was rationally designed 10 years ago, and has become the best investigated HDAC6i to date. It shows efficacy in various neurological disease animal models, as HDAC6 plays a crucial regulatory role in axonal transport deficits, protein aggregation, as well as oxidative stress. In this work, we provide new insights into this HDAC6i by investigating the molecular basis of its interactions with HDAC6 through X-ray crystallography, determining its functional capability to elevate the levels of acetylated α-tubulin in vitro and in vivo, correlating PK/PD profiles to determine effective doses in plasma and brain, and finally assessing its therapeutic potential toward psychiatric diseases through use of the SmartCube screening platform.
Zobrazit více v PubMed
de Ruijter A. J.; van Gennip A. H.; Caron H. N.; Kemp S.; van Kuilenburg A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 2003, 370, 737–749. 10.1042/bj20021321. PubMed DOI PMC
Drummond D. C.; Noble C. O.; Kirpotin D. B.; Guo Z.; Scott G. K.; Benz C. C. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 495–528. 10.1146/annurev.pharmtox.45.120403.095825. PubMed DOI
Boyault C.; Sadoul K.; Pabion M.; Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 2007, 26, 5468–5476. 10.1038/sj.onc.1210614. PubMed DOI
Zhang Y.; Kwon S.; Yamaguchi T.; Cubizolles F.; Rousseaux S.; Kneissel M.; Cao C.; Li N.; Cheng H. L.; Chua K.; Lombard D.; Mizeracki A.; Matthias G.; Alt F. W.; Khochbin S.; Matthias P. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell. Biol. 2008, 28, 1688–1701. 10.1128/MCB.01154-06. PubMed DOI PMC
Hammond J. W.; Huang C. F.; Kaech S.; Jacobson C.; Banker G.; Verhey K. J. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 2010, 21, 572–583. 10.1091/mbc.e09-01-0044. PubMed DOI PMC
Perdiz D.; Mackeh R.; Pous C.; Baillet A. The ins and outs of tubulin acetylation: more than just a post-translational modification?. Cell. Signalling 2011, 23, 763–771. 10.1016/j.cellsig.2010.10.014. PubMed DOI
North B. J.; Marshall B. L.; Borra M. T.; Denu J. M.; Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 2003, 11, 437–444. 10.1016/S1097-2765(03)00038-8. PubMed DOI
Bobrowska A.; Donmez G.; Weiss A.; Guarente L.; Bates G. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington’s disease phenotypes in vivo. PLoS One 2012, 7, e3480510.1371/journal.pone.0034805. PubMed DOI PMC
Kozlov M. V.; Kleymenova A. A.; Konduktorov K. A.; Malikova A. Z.; Kochetkov S. N. Selective inhibitor of histone deacetylase 6 (tubastatin A) suppresses proliferation of hepatitis C virus replicon in culture of human hepatocytes. Biochemistry (Moscow) 2014, 79, 637–642. 10.1134/S0006297914070050. PubMed DOI
Majid T.; Griffin D.; Criss Z. 2nd; Jarpe M.; Pautler R. G. Pharmocologic treatment with histone deacetylase 6 inhibitor (ACY-738) recovers Alzheimer’s disease phenotype in amyloid precursor protein/presenilin 1 (APP/PS1) mice. Alzheimers Dement. 2015, 1, 170–181. 10.1016/j.trci.2015.08.001. PubMed DOI PMC
d’Ydewalle C.; Krishnan J.; Chiheb D. M.; Van Damme P.; Irobi J.; Kozikowski A. P.; Vanden Berghe P.; Timmerman V.; Robberecht W.; Van Den Bosch L. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med. 2011, 17, 968–974. 10.1038/nm.2396. PubMed DOI
Mo Z.; Zhao X.; Liu H.; Hu Q.; Chen X. Q.; Pham J.; Wei N.; Liu Z.; Zhou J.; Burgess R. W.; Pfaff S. L.; Caskey C. T.; Wu C.; Bai G.; Yang X. L. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat. Commun. 2018, 9, 1007.10.1038/s41467-018-03461-z. PubMed DOI PMC
Benoy V.; Van Helleputte L.; Prior R.; d’Ydewalle C.; Haeck W.; Geens N.; Scheveneels W.; Schevenels B.; Cader M. Z.; Talbot K.; Kozikowski A. P.; Vanden Berghe P.; Van Damme P.; Robberecht W.; Van Den Bosch L. HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. Brain 2018, 141, 673–687. 10.1093/brain/awx375. PubMed DOI PMC
Guo W.; Naujock M.; Fumagalli L.; Vandoorne T.; Baatsen P.; Boon R.; Ordovas L.; Patel A.; Welters M.; Vanwelden T.; Geens N.; Tricot T.; Benoy V.; Steyaert J.; Lefebvre-Omar C.; Boesmans W.; Jarpe M.; Sterneckert J.; Wegner F.; Petri S.; Bohl D.; Vanden Berghe P.; Robberecht W.; Van Damme P.; Verfaillie C.; Van Den Bosch L.; et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat. Commun. 2017, 8, 861.10.1038/s41467-017-00911-y. PubMed DOI PMC
Rossaert E.; Pollari E.; Jaspers T.; Van Helleputte L.; Jarpe M.; Van Damme P.; De Bock K.; Moisse M.; Van Den Bosch L. Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol. Commun. 2019, 7, 107.10.1186/s40478-019-0750-2. PubMed DOI PMC
Xu X.; Kozikowski A. P.; Pozzo-Miller L. A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice: implications for Rett syndrome. Front. Cell. Neurosci. 2014, 8, 68.10.3389/fncel.2014.00068. PubMed DOI PMC
Gold W. A.; Lacina T. A.; Cantrill L. C.; Christodoulou J. MeCP2 deficiency is associated with reduced levels of tubulin acetylation and can be restored using HDAC6 inhibitors. J. Mol. Med. 2015, 93, 63–72. 10.1007/s00109-014-1202-x. PubMed DOI
Butler K. V.; Kalin J.; Brochier C.; Vistoli G.; Langley B.; Kozikowski A. P. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 2010, 132, 10842–10846. 10.1021/ja102758v. PubMed DOI PMC
Wang X. X.; Wan R. Z.; Liu Z. P. Recent advances in the discovery of potent and selective HDAC6 inhibitors. Eur. J. Med. Chem. 2018, 143, 1406–1418. 10.1016/j.ejmech.2017.10.040. PubMed DOI
Geraldy M.; Morgen M.; Sehr P.; Steimbach R. R.; Moi D.; Ridinger J.; Oehme I.; Witt O.; Malz M.; Nogueira M. S.; Koch O.; Gunkel N.; Miller A. K. Selective inhibition of histone deacetylase 10: hydrogen bonding to the gatekeeper residue is implicated. J. Med. Chem. 2019, 62, 4426–4443. 10.1021/acs.jmedchem.8b01936. PubMed DOI
Kozikowski A. P.; Shen S.; Pardo M.; Tavares M. T.; Szarics D.; Benoy V.; Zimprich C. A.; Kutil Z.; Zhang G.; Barinka C.; Robers M. B.; Van Den Bosch L.; Eubanks J. H.; Jope R. S. Brain penetrable histone deacetylase 6 inhibitor SW-100 ameliorates memory and learning impairments in a mouse model of Fragile X Syndrome. ACS Chem. Neurosci. 2019, 10, 1679–1695. 10.1021/acschemneuro.8b00600. PubMed DOI PMC
Hai Y.; Christianson D. W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 2016, 12, 741–747. 10.1038/nchembio.2134. PubMed DOI PMC
Miyake Y.; Keusch J. J.; Wang L.; Saito M.; Hess D.; Wang X.; Melancon B. J.; Helquist P.; Gut H.; Matthias P. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol. 2016, 12, 748–754. 10.1038/nchembio.2140. PubMed DOI
Porter N. J.; Mahendran A.; Breslow R.; Christianson D. W. Unusual zinc-binding mode of HDAC6-selective hydroxamate inhibitors. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 13459–13464. 10.1073/pnas.1718823114. PubMed DOI PMC
Porter N. J.; Osko J. D.; Diedrich D.; Kurz T.; Hooker J. M.; Hansen F. K.; Christianson D. W. Histone deacetylase 6-selective inhibitors and the influence of capping groups on hydroxamate-zinc denticity. J. Med. Chem. 2018, 61, 8054–8060. 10.1021/acs.jmedchem.8b01013. PubMed DOI PMC
Mackwitz M. K. W.; Hamacher A.; Osko J. D.; Held J.; Scholer A.; Christianson D. W.; Kassack M. U.; Hansen F. K. Multicomponent synthesis and binding mode of imidazo[1,2- a]pyridine-capped selective HDAC6 inhibitors. Org. Lett. 2018, 20, 3255–3258. 10.1021/acs.orglett.8b01118. PubMed DOI PMC
Vogerl K.; Ong N.; Senger J.; Herp D.; Schmidtkunz K.; Marek M.; Muller M.; Bartel K.; Shaik T. B.; Porter N. J.; Robaa D.; Christianson D. W.; Romier C.; Sippl W.; Jung M.; Bracher F. Synthesis and biological investigation of phenothiazine-based benzhydroxamic acids as selective histone deacetylase 6 inhibitors. J. Med. Chem. 2019, 62, 1138–1166. 10.1021/acs.jmedchem.8b01090. PubMed DOI PMC
Bhatia S.; Krieger V.; Groll M.; Osko J. D.; Ressing N.; Ahlert H.; Borkhardt A.; Kurz T.; Christianson D. W.; Hauer J.; Hansen F. K. Discovery of the first-in-class dual histone deacetylase-proteasome inhibitor. J. Med. Chem. 2018, 61, 10299–10309. 10.1021/acs.jmedchem.8b01487. PubMed DOI PMC
Jochems J.; Boulden J.; Lee B. G.; Blendy J. A.; Jarpe M.; Mazitschek R.; Van Duzer J. H.; Jones S.; Berton O. Antidepressant-like properties of novel HDAC6-selective inhibitors with improved brain bioavailability. Neuropsychopharmacology 2014, 39, 389–400. 10.1038/npp.2013.207. PubMed DOI PMC
Zhang L.; Liu C.; Wu J.; Tao J. J.; Sui X. L.; Yao Z. G.; Xu Y. F.; Huang L.; Zhu H.; Sheng S. L.; Qin C. Tubastatin A/ACY-1215 improves cognition in Alzheimer’s disease transgenic mice. J. Alzheimer's Dis. 2014, 41, 1193–1205. 10.3233/JAD-140066. PubMed DOI
Selenica M. L.; Benner L.; Housley S. B.; Manchec B.; Lee D. C.; Nash K. R.; Kalin J.; Bergman J. A.; Kozikowski A.; Gordon M. N.; Morgan D. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimer's Res. Ther. 2014, 6, 12.10.1186/alzrt241. PubMed DOI PMC
Jian W.; Wei X.; Chen L.; Wang Z.; Sun Y.; Zhu S.; Lou H.; Yan S.; Li X.; Zhou J.; Zhang B. Inhibition of HDAC6 increases acetylation of peroxiredoxin1/2 and ameliorates 6-OHDA induced dopaminergic injury. Neurosci. Lett. 2017, 658, 114–120. 10.1016/j.neulet.2017.08.029. PubMed DOI
Wang Z.; Leng Y.; Wang J.; Liao H. M.; Bergman J.; Leeds P.; Kozikowski A.; Chuang D. M. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of alpha-tubulin acetylation and FGF-21 up-regulation. Sci. Rep. 2016, 6, 19626.10.1038/srep19626. PubMed DOI PMC
Shen S.; Benoy V.; Bergman J. A.; Kalin J. H.; Frojuello M.; Vistoli G.; Haeck W.; Van Den Bosch L.; Kozikowski A. P. Bicyclic-capped histone deacetylase 6 inhibitors with improved activity in a model of axonal Charcot-Marie-Tooth Disease. ACS Chem. Neurosci. 2016, 7, 240–258. 10.1021/acschemneuro.5b00286. PubMed DOI PMC
Vogl D. T.; Raje N.; Jagannath S.; Richardson P.; Hari P.; Orlowski R.; Supko J. G.; Tamang D.; Yang M.; Jones S. S.; Wheeler C.; Markelewicz R. J.; Lonial S. Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiple myeloma. Clin. Cancer Res. 2017, 23, 3307–3315. 10.1158/1078-0432.CCR-16-2526. PubMed DOI PMC
Sweeney M. D.; Sagare A. P.; Zlokovic B. V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. 10.1038/nrneurol.2017.188. PubMed DOI PMC
Gertz M.; Kilford P. J.; Houston J. B.; Galetin A. Drug lipophilicity and microsomal protein concentration as determinants in the prediction of the fraction unbound in microsomal incubations. Drug Metab. Dispos. 2008, 36, 535–542. 10.1124/dmd.107.018713. PubMed DOI
Kim C.; Choi H.; Jung E. S.; Lee W.; Oh S.; Jeon N. L.; Mook-Jung I. HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons. PLoS One 2012, 7, e4298310.1371/journal.pone.0042983. PubMed DOI PMC
Fukada M.; Hanai A.; Nakayama A.; Suzuki T.; Miyata N.; Rodriguiz R. M.; Wetsel W. C.; Yao T. P.; Kawaguchi Y. Loss of deacetylation activity of Hdac6 affects emotional behavior in mice. PLoS One 2012, 7, e3092410.1371/journal.pone.0030924. PubMed DOI PMC
Roberds S. L.; Filippov I.; Alexandrov V.; Hanania T.; Brunner D. Rapid, computer vision-enabled murine screening system identifies neuropharmacological potential of two new mechanisms. Front. Neurosci. 2011, 5, 103.10.3389/fnins.2011.00103. PubMed DOI PMC
Zhang H. K.; Eaton J. B.; Yu L. F.; Nys M.; Mazzolari A.; van Elk R.; Smit A. B.; Alexandrov V.; Hanania T.; Sabath E.; Fedolak A.; Brunner D.; Lukas R. J.; Vistoli G.; Ulens C.; Kozikowski A. P. Insights into the structural determinants required for high-affinity binding of chiral cyclopropane-containing ligands to alpha4beta2-nicotinic acetylcholine receptors: an integrated approach to behaviorally active nicotinic ligands. J. Med. Chem. 2012, 55, 8028–8037. 10.1021/jm3008739. PubMed DOI PMC
Gunosewoyo H.; Midzak A.; Gaisina I. N.; Sabath E. V.; Fedolak A.; Hanania T.; Brunner D.; Papadopoulos V.; Kozikowski A. P. Characterization of maleimide-based glycogen synthase kinase-3 (GSK-3) inhibitors as stimulators of steroidogenesis. J. Med. Chem. 2013, 56, 5115–5129. 10.1021/jm400511s. PubMed DOI PMC