In vitro antifungal susceptibility patterns of Trichophyton benhamiae complex isolates from diverse origin

. 2021 Nov ; 64 (11) : 1378-1386. [epub] 20210425

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33864711

BACKGROUND: Species from the Trichophyton benhamiae complex are mostly zoophilic dermatophytes which cause inflammatory dermatophytosis in animals and humans worldwide. OBJECTIVES: This study was purposed to (a) to identify 169 reference and clinical dermatophyte strains from the T benhamiae complex species by molecular method and adhering to the newest taxonomy in the complex (b) to evaluate the in vitro antifungal susceptibility profile of these strains against eight common and new antifungal agents that may be used for the treatment of dermatophytosis. METHODS: All isolates, mainly originated from Europe but also from Iran, Japan and USA, were subjected to ITS-rDNA sequencing. The in vitro antifungal susceptibility profiles of eight common and new antifungal drugs against the isolates were determined by CLSI M38-A2 protocol and according to microdilution method. RESULTS: Based on the ITS-rDNA sequencing, T benhamiae was the dominant species (n = 102), followed by T europaeum (n = 29), T erinacei (n = 23), T japonicum (n = 10), Trichophyton sp (n = 4) and T eriotrephon (n = 1). MIC ranges across all isolates were as follows: luliconazole: 0.0002-0.002 µg/ml, terbinafine: 0.008-0.125 µg/ml, efinaconazole: 0.008-0.125 µg/ml, ciclopirox olamine: 0.03-0.5 µg/ml, itraconazole: 0.06-2 µg/ml, griseofulvin: 0.25-4 µg/ml, amorolfine hydrochloride: 0.125-4 µg/ml and tavaborole: 1-16 µg/ml. CONCLUSION: Luliconazole, efinaconazole and terbinafine were the most potent antifungals against T benhamiae complex isolates, regardless of the geographic locations where strains were isolated. These data might help dermatologists to develop effective therapies for successful treatment of infections due to T benhamiae complex species.

Zobrazit více v PubMed

de Hoog GS, Dukik K, Monod M, et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia. 2017;182(1-2):5-31. https://doi.org/10.1007/s11046-016-0073-9

Čmoková A, Kolařík M, Dobiáš R, et al. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Divers. 2020;104(1):333-387. https://doi.org/10.1007/s13225-020-00465-3

Berlin M, Kupsch C, Ritter L, Stoelcker B, Heusinger A, Gräser Y. German-wide analysis of the prevalence and the propagation factors of the zoonotic dermatophyte Trichophyton benhamiae. J Fungi. 2020;6(3):161. https://doi.org/10.3390/jof6030161

Hubka V, Peano A, Cmokova A, Guillot J. Common and emerging dermatophytoses in animals: well-known and new threats. In Seyedmousavi S, de Hoog GS, Guillot J, Verweij PE (Eds.), Emerging and Epizootic Fungal Infections in Animals. Springer; 2018:31-79.

Sabou M, Denis J, Boulanger N, et al. Molecular identification of Trichophyton benhamiae in Strasbourg, France: a 9-year retrospective study. Med Mycol. 2018;56(6):723-734. https://doi.org/10.1093/mmy/myx100

Nenoff P, Uhrlaß S, Krüger C, et al. Trichophyton species of Arthroderma benhamiae-a new infectious agent in dermatology. J Dtsch Dermatol Ges. 2014;12(7):571-581.

Kargl A, Kosse B, Uhrlass S, et al. Hedgehog fungi in a dermatological office in Munich: case reports and review. Hautarzt. 2018;69(7):576-585. https://doi.org/10.1007/s00105-018-4134-5

Rudramurthy SM, Shankarnarayan SA, Dogra S, et al. Mutation in the squalene epoxidase gene of Trichophyton interdigitale and Trichophyton rubrum associated with allylamine resistance. Antimicrob Agents Chemother. 2018;62(5):e02522. https://doi.org/10.1128/AAC.02522-17

Monod M, Feuermann M, Salamin K, et al. Trichophyton rubrum Azole resistance mediated by a new ABC transporter, TruMDR3. Antimicrob Agents Chemother. 2019;63(11):e00863-00819. https://doi.org/10.1128/AAC.00863-19

Saunte DML, Hare RK, Jorgensen KM, et al. Emerging terbinafine resistance in trichophyton: clinical characteristics, squalene epoxidase gene mutations, and a reliable EUCAST method for detection. Antimicrob Agents Chemother. 2019;63(10):e01126-01119. https://doi.org/10.1128/AAC.01126-19

Taghipour S, Shamsizadeh F, Pchelin IM, et al. Emergence of terbinafine resistant Trichophyton mentagrophytes in Iran, harboring mutations in the squalene epoxidase (SQLE) gene. Infect Drug Resist. 2020;13:845-850. https://doi.org/10.2147/IDR.S246025

Khurana A, Masih A, Chowdhary A, et al. Correlation of in vitro susceptibility based on MICs and squalene epoxidase mutations with clinical response to terbinafine in patients with Tinea Corporis/Cruris. Antimicrob Agents Chemother. 2018;62(12):e01038-18. https://doi.org/10.1128/AAC.01038-18

Rezaei-Matehkolaei A, Rafiei A, Makimura K, Graser Y, Gharghani M. Sadeghi-Nejad B epidemiological aspects of dermatophytosis in Khuzestan, southwestern Iran, an update. Mycopathologia. 2016;181(7-8):547-553. https://doi.org/10.1007/s11046-016-9990-x

White TJ, Bruns T, Lee S. Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds.), PCR Protocols: A Guide to Methods and Applications. 1990;18(1):315-322.

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054

Wayne P Clinical and Laboratory Standards Institute: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. CLSI document M27-A3 and Supplement S. 2008;3:6-12.

Uchida K, Tanaka T, Yamaguchi Hideyo. Achievement of complete mycological cure by topical antifungal agent NND-502 in guinea pig model of tinea pedis. Microbiol Immunol. 2003;47(2):143-146. https://doi.org/10.1111/j.1348-0421.2003.tb02797.x

Bishnoi A, Vinay K, Dogra S. Emergence of recalcitrant dermatophytosis in India. Lancet Infect Dis. 2018;18(3):250-251. https://doi.org/10.1016/S1473-3099(18)30079-3

Gupta AK, Cooper EA. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008;166(5-6):353-367. https://doi.org/10.1007/s11046-008-9109-0

Carrillo-Muñoz AJ, Quindós G, Ruesga M, et al. In vitro antifungal susceptibility testing of filamentous fungi with sensititre yeast OneTM. Mycoses. 2006;49(4):293-297. https://doi.org/10.1111/j.1439-0507.2006.01250.x

Ansari S, Ahmadi B, Hedayati MT, et al. Investigation of in vitro antifungal susceptibility testing and genetic diversity of clinical isolates of Trichophyton benhamiae and Trichophyton eriotrephon in Iran. Mycoses. 2020;64(3):316-323. https://doi.org/10.1111/myc.13210

Ansari S, Ahmadi B, Tabatabaeifar SN, et al. Familial cases of Trichophyton benhamiae infection transmitted from a guinea pig in Iran. Mycopathologia. 2021;186(1):119-125. https://doi.org/10.1007/s11046-020-00513-1

Baghi N, Shokohi T, Badali H, et al. In vitro activity of new azoles luliconazole and lanoconazole compared with ten other antifungal drugs against clinical dermatophyte isolates. Med Mycol. 2016;54(7):757-763. https://doi.org/10.1093/mmy/myw016

Khanna D, Bharti S. Luliconazole for the treatment of fungal infections: an evidence-based review. Core Evid. 2014;9:113-124. https://doi.org/10.2147/CE.S49629

Rezaei-Matehkolaei A, Khodavaisy S, Alshahni MM, et al. in vitro antifungal activity of novel Triazole Efinaconazole and five comparators against dermatophyte isolates. Antimicrob Agents Chemother. 2018;62(5):e02423-17. https://doi.org/10.1128/AAC.02423-17

Shaw D, Singh S, Dogra S, et al. MIC and upper limit of wild-type distribution for 13 antifungal agents against a Trichophyton mentagrophytes-Trichophyton interdigitale complex of indian origin. Antimicrob Agents Chemother. 2020;64(4):e01964-19. https://doi.org/10.1128/AAC.01964-19

Wiederhold NP, Fothergill AW, McCarthy DI, Tavakkol A. Luliconazole demonstrates potent in vitro activity against dermatophytes recovered from patients with onychomycosis. Antimicrob Agents Chemother. 2014;58(6):3553-3555. https://doi.org/10.1128/AAC.02706-13

Zareshahrabadi Z, Totonchi A, Rezaei-Matehkolaei A, et al. Molecular identification and antifungal susceptibility among clinical isolates of dermatophytes in Shiraz, Iran (2017-2019). Mycoses. 2020;64(4):385-393. https://doi.org/10.1111/myc.13226

Gupta AK, Simpson FC. Efinaconazole (Jublia) for the treatment of onychomycosis. Expert Rev Anti-Infect Ther. 2014;12(7):743-752. https://doi.org/10.1586/14787210.2014.919852

Sugiura K, Sugimoto N, Hosaka S, et al. The low keratin affinity of efinaconazole contributes to its nail penetration and fungicidal activity in topical onychomycosis treatment. Antimicrob Agents Chemother. 2014;58(7):3837-3842. https://doi.org/10.1128/AAC.00111-14

Siu WJJ, Tatsumi Y, Senda H, et al. Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother. 2013;57(4):1610-1616. https://doi.org/10.1128/AAC.02056-12

Sun CW, Hsu S. Terbinafine: safety profile and monitoring in treatment of dermatophyte infections. Dermatol Ther. 2019;32(6):e13111. https://doi.org/10.1111/dth.13111

Ansari S, Ahmadi B, Norouzi M, et al. Epidermophyton floccosum: nucleotide sequence analysis and antifungal susceptibility testing of 40 clinical isolates. J Med Microbiol. 2019;68(11):1655-1663. https://doi.org/10.1099/jmm.0.001074

Deng S, de Hoog GS, Verweij PE, et al. In vitro antifungal susceptibility of Trichophyton violaceum isolated from tinea capitis patients. J Antimicrob Chemother. 2015;70(4):1072-1075. https://doi.org/10.1093/jac/dku503

Deng S, Ansari S, Ilkit M, et al. In Vitro antifungal susceptibility profiles of 12 antifungal drugs against 55 Trichophyton schoenleinii isolates from tinea capitis favosa patients in Iran, Turkey, and China. Antimicrob Agents Chemother. 2017;61(2):e01753-16. https://doi.org/10.1128/AAC.01753-16

Fattahi A, Shirvani F, Ayatollahi A, et al. Multidrug-resistant Trichophyton mentagrophytes genotype VIII in an Iranian family with generalized dermatophytosis: report of four cases and review of literature. Int J Dermatol. 2020. https://doi.org/10.1111/ijd.15226

Badali H, Mohammadi R, Mashedi O, de Hoog GS, Meis JF. In vitro susceptibility patterns of clinically important Trichophyton and Epidermophyton species against nine antifungal drugs. Mycoses. 2015;58(5):303-307.

Ansari S, Hedayati MT, Zomorodian K, et al. Molecular characterization and in vitro antifungal susceptibility of 316 clinical isolates of dermatophytes in Iran. Mycopathologia. 2016;181(1):89-95.

Singh A, Masih A, Monroy-Nieto J, et al. A unique multidrug-resistant clonal Trichophyton population distinct from Trichophyton mentagrophytes/Trichophyton interdigitale complex causing an ongoing alarming dermatophytosis outbreak in India: genomic insights and resistance profile. Fungal Genet Biol. 2019;133:103266. https://doi.org/10.1016/j.fgb.2019.103266

Gupta AK, Plott T. Ciclopirox: a broad-spectrum antifungal with antibacterial and anti-inflammatory properties. Int J Dermatol. 2004;43(S1):3-8. https://doi.org/10.1111/j.1461-1244.2004.02380.x

Haria M, Bryson HM. Amorolfine. A review of its pharmacological properties and therapeutic potential in the treatment of onychomycosis and other superficial fungal infections. Drugs. 1995;49(1):103-120. https://doi.org/10.2165/00003495-199549010-00008

Markham A. Tavaborole: first global approval. Drugs. 2014;74(13):1555-1558. https://doi.org/10.1007/s40265-014-0276-7

Coronado D, Merchant T, Chanda S. Zane LT. In Vitro nail penetration and antifungal activity of Tavaborole, a boron-based pharmaceutical. J Drugs Dermatol. 2015;14(6):609-614.

Abastabar M, Haghani I, Shokohi T, et al. Low In vitro antifungal activity of Tavaborole against Yeasts and molds from onychomycosis. Antimicrob Agents Chemother. 2018;62(12):e01632-18. https://doi.org/10.1128/AAC.01632-18

Abastabar M, Jedi A, Guillot J, et al. In vitro activities of 15 antifungal drugs against a large collection of clinical isolates of Microsporum canis. Mycoses. 2019;62(11):1069-1078. https://doi.org/10.1111/myc.12986

Jiang Y, Luo W, Verweij PE, et al. Regional differences in antifungal susceptibility of the prevalent dermatophyte Trichophyton rubrum. Mycopathologia. 2021;186(1):53-70. https://doi.org/10.1007/s11046-020-00515-z

Kano R, Kimura U, Kakurai M, et al. Trichophyton indotineae sp. nov: a new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia. 2020;185(6):1-12.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...