Molecular cytogenetic characterisation of Elytrigia ×mucronata, a natural hybrid of E. intermedia and E. repens (Triticeae, Poaceae)

. 2019 May 31 ; 19 (1) : 230. [epub] 20190531

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31151385

Grantová podpora
RVO 67985939 Akademie Věd České Republiky
17-06548S Grantová Agentura České Republiky
SVV 260439 Univerzita Karlova v Praze

Odkazy

PubMed 31151385
PubMed Central PMC6544950
DOI 10.1186/s12870-019-1806-y
PII: 10.1186/s12870-019-1806-y
Knihovny.cz E-zdroje

BACKGROUND: Interspecific hybridisation resulting in polyploidy is one of the major driving forces in plant evolution. Here, we present data from the molecular cytogenetic analysis of three cytotypes of Elytrigia ×mucronata using sequential fluorescence (5S rDNA, 18S rDNA and pSc119.2 probes) and genomic in situ hybridisation (four genomic probes of diploid taxa, i.e., Aegilops, Dasypyrum, Hordeum and Pseudoroegneria). RESULTS: The concurrent presence of Hordeum (descended from E. repens) and Dasypyrum + Aegilops (descended from E. intermedia) chromosome sets in all cytotypes of E. ×mucronata confirmed the assumed hybrid origin of the analysed plants. The following different genomic constitutions were observed for E. ×mucronata. Hexaploid plants exhibited three chromosome sets from Pseudoroegneria and one chromosome set each from Aegilops, Hordeum and Dasypyrum. Heptaploid plants harboured the six chromosome sets of the hexaploid plants and an additional Pseudoroegneria chromosome set. Nonaploid cytotypes differed in their genomic constitutions, reflecting different origins through the fusion of reduced and unreduced gametes. The hybridisation patterns of repetitive sequences (5S rDNA, 18S rDNA, and pSc119.2) in E. ×mucronata varied between and within cytotypes. Chromosome alterations that were not identified in the parental species were found in both heptaploid and some nonaploid plants. CONCLUSIONS: The results confirmed that both homoploid hybridisation and heteroploid hybridisation that lead to the coexistence of four different haplomes within single hybrid genomes occur in Elytrigia allopolyploids. The chromosomal alterations observed in both heptaploid and some nonaploid plants indicated that genome restructuring occurs during and/or after the hybrids arose. Moreover, a specific chromosomal translocation detected in one of the nonaploids indicated that it was not a primary hybrid. Therefore, at least some of the hybrids are fertile. Hybridisation in Triticeae allopolyploids clearly and significantly contributes to genomic diversity. Different combinations of parental haplomes coupled with chromosomal alterations may result in the establishment of unique lineages, thus providing raw material for selection.

Zobrazit více v PubMed

Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6(11):836–846. doi: 10.1038/nrg1711. PubMed DOI

Meyers LA, Levin DA. On the abundance of polyploids in flowering plants. Evolution. 2006;60(6):1198–1206. doi: 10.1111/j.0014-3820.2006.tb01198.x. PubMed DOI

Soltis PS, Soltis DE. The role of hybridization in plant speciation. Annu Rev Plant Biol. 2009;60:561–588. doi: 10.1146/annurev.arplant.043008.092039. PubMed DOI

Goulet BE, Roda F, Hopkins R. Hybridization in plants: old ideas, new techniques. Plant Physiol. 2017;173(1):65–78. doi: 10.1104/pp.16.01340. PubMed DOI PMC

Grant V. Plant speciation. 2. New York: Columbia University Press; 1981.

Wang H, Vieira FG, Crawford JE, Chu C, Nielsen R. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Res. 2017;27(6):1029–1038. doi: 10.1101/gr.204800.116. PubMed DOI PMC

Harlan JR, DeWet J. On Ö. Winge and a prayer: the origin of polyploidy. Bot Rev. 1975;41(4):361–390. doi: 10.1007/BF02860830. DOI

Suarez EY, Lopez AG, Naranjo CA. Polyspermy versus unreduced male gametes as the origin of nonaploids (9x) common wheat plants. Caryologia. 1992;45(1):21–28. doi: 10.1080/00087114.1992.10797206. DOI

Ramsey J, Schemske D. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst. 1998;29:467–501. doi: 10.1146/annurev.ecolsys.29.1.467. DOI

Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, et al. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet. 2008;42:443–461. doi: 10.1146/annurev.genet.42.110807.091524. PubMed DOI

Feldman M, Levy A, Chalhoub B, Kashkush K. Soltis PS, Soltis DE, editors. Polyploidy and genome evolution. Berlin: Springer Berlin Heidelberg; 2012. Genomic plasticity in polyploid wheat; pp. 109–135.

Dewey DR. In: The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Gustafson J, editor. New York: Plenum Press; 1984. pp. 209–279.

Löve Áskell. Conspectus of the Triticeae. Feddes Repertorium. 1984;95(7-8):425–521.

Soreng Robert J., Peterson Paul M., Romaschenko Konstantin, Davidse Gerrit, Teisher Jordan K., Clark Lynn G., Barberá Patricia, Gillespie Lynn J., Zuloaga Fernando O. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. Journal of Systematics and Evolution. 2017;55(4):259–290. doi: 10.1111/jse.12262. DOI

Mahelka V, Suda J, Jarolímová V, Trávníček P. Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae: Triticeae) and their hybrid. Folia Geobot. 2005;40:367–384. doi: 10.1007/BF02804286. DOI

Mahelka V, Fehrer J, Krahulec F, Jarolímová V. Recent natural hybridization between two allopolyploid wheatgrasses (Elytrigia, Poaceae): ecological and evolutionary implications. Ann Bot. 2007;100(2):249–260. doi: 10.1093/aob/mcm093. PubMed DOI PMC

Mason-Gamer RJ. Allohexaploidy, introgression, and the complex phylogenetic history of Elymus repens (Poaceae) Mol Phylogenet Evol. 2008;47(2):598–611. doi: 10.1016/j.ympev.2008.02.008. PubMed DOI

Mahelka V, Kopecký D. Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics. Mol Biol Evol. 2010;27(6):1370–1390. doi: 10.1093/molbev/msq021. PubMed DOI

Mahelka V, Kopecký D, Paštová L. On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae) BMC Evol Biol. 2011;11:127. doi: 10.1186/1471-2148-11-127. PubMed DOI PMC

Wang RRC, Lu B. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J Syst Evol. 2014;52:697–705. doi: 10.1111/jse.12084. DOI

Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst Biol. 2004;53(1):25–37. doi: 10.1080/10635150490424402. PubMed DOI

Mahelka V, Krak K, Kopecký D, Fehrer J, Šafář J, Bartoš J, et al. Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages. PNAS. 2017;114(7):1726–1731. doi: 10.1073/pnas.1613375114. PubMed DOI PMC

Mahelka V, Kopecký D, Baum BR. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae) Mol Biol Evol. 2013;30(9):2065–2086. doi: 10.1093/molbev/mst106. PubMed DOI

Kishii M, Wang R-C, Tsujimoto H. GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. Czech J Genet Plant Breed. 2005;41:92–95. doi: 10.17221/6143-CJGPB. DOI

Ellneskog-Staam P, Salomon B, von Bothmer R, Anamthawat-Jònsson K. Trigenomic origin of the hexaploid Psammopyrum athericum (Triticeae: Poaceae) revealed by in-situ hybridization. Chromosom Res. 2001;9(3):243–249. doi: 10.1023/A:1016604705296. PubMed DOI

Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation) Genes. 2010;1(2):166–192. doi: 10.3390/genes1020166. PubMed DOI PMC

Chester M, Gallagher JP, Symonds VV, Veruska A, Mavrodiev EV, Leitch AR, et al. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae) PNAS. 2012;109(4):1176–1181. doi: 10.1073/pnas.1112041109. PubMed DOI PMC

Weiss-Schneeweiss H, Tremetsberger K, Schneeweiss GM, Parker JS, Stuessy TF. Karyotype diversification and evolution in diploid and polyploid south American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann Bot. 2008;101(7):909–918. doi: 10.1093/aob/mcn023. PubMed DOI PMC

Brasileiro-Vidal AC, Cuadrado A, Brammer SP, Zanatta ACA, Prestes AM, Moraes-Fernandes MIB, et al. Chromosome characterization in Thinopyrum ponticum (Triticeae, Poaceae) using in situ hybridization with different DNA sequences. Genet Mol Biol. 2003;26(4):505–510. doi: 10.1590/S1415-47572003000400014. DOI

Östergren G. Cytology of Agropyron junceum, A. repens and their spontaneous hybrids. Hereditas. 1940;26:305–316. doi: 10.1111/j.1601-5223.1940.tb03239.x. DOI

Refoufi A, Jahier J, Esnault MA. Genome analysis of a natural hybrid with 2n = 63 chromosomes in the genus Elytrigia Desv. (Poaceae) using the GISH technique. Plant Biol. 2001;3(4):386–390. doi: 10.1055/s-2001-16463. PubMed DOI

Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, et al. Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. PNAS. 2013;110(9):3447–3452. doi: 10.1073/pnas.1300153110. PubMed DOI PMC

Dou Q-W, Chen Z-G, Liu Y-A, Tsujimoto H. High frequency of karyotype variation revealed by sequential FISH and GISH in plateau perennial grass forage Elymus nutans. Breed Sci. 2009;59(5):651–656. doi: 10.1270/jsbbs.59.651. DOI

Wang Q, Liu H, Gao A, Yang X, Liu W, Li X, et al. Intergenomic rearrangements after polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae) affected by environmental factors. PLoS One. 2012;7(2):e31033. doi: 10.1371/journal.pone.0031033. PubMed DOI PMC

Schlegel R. Dictionary of plant breeding. Boca Raton: CRC Press; 2009.

Volkov R, Komarova N, Hemleben V. Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst Biodivers. 2007;5(3):261–276. doi: 10.1017/S1477200007002447. DOI

Sochorová J, Coriton O, Kuderová A, Lunerová J, Chèvre A-M, Kovařík A. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus. Ann Bot. 2017;119(1):13–26. doi: 10.1093/aob/mcw187. PubMed DOI PMC

Kotseruba V, Gernard D, Meister A, Houben A. Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8) Genome. 2003;46:156–163. doi: 10.1139/g02-104. PubMed DOI

Li D, Zhang X. Physical localization of the 18S-5·8S-26S rDNA and sequence analysis of ITS regions in Thinopyrum ponticum (Poaceae: Triticeae): implications for concerted evolution. Ann Bot. 2002;90:445–452. doi: 10.1093/aob/mcf213. PubMed DOI PMC

Kovařík A, Matyášek R, Lim KY, Skalická K, Koukalová B, Knapp S, et al. Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc. 2004;82(4):615–625. doi: 10.1111/j.1095-8312.2004.00345.x. DOI

Jiang J, Gill BS. New 18S·26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma. 1994;103(3):179–185. doi: 10.1007/BF00368010. PubMed DOI

Dubcovsky J, Dvořák J. Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics. 1995;140(4):1367–1377. PubMed PMC

Raskina O, Belyayev A, Nevo E. Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. PNAS. 2004;101(41):14818–14823. doi: 10.1073/pnas.0405817101. PubMed DOI PMC

Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res. 2008;120(3–4):351–357. doi: 10.1159/000121084. PubMed DOI

Eickbush TH, Eickbush DG. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics. 2007;175(2):477–485. doi: 10.1534/genetics.107.071399. PubMed DOI PMC

Georgieva M, Sepsi A, Molnár-Láng M, Tyankova N. Molecular cytogenetic analysis of Triticum aestivum and Thinopyrum intermedium using the FISH technique. C R Acad Bulg Sci. 2011;64(12):1713–1718.

Ørgaard M, Anamthawat-Jónsson K. Genome discrimination by in situ hybridization in Icelandic species of Elymus and Elytrigia (Poaceae: Triticeae) Genome. 2001;44(2):275–283. doi: 10.1139/g00-109. PubMed DOI

Lysák MA, Fransz PF, Ali HB, Schubert I. Chromosome painting in Arabidopsis thaliana. Plant J. 2001;28(6):689–697. doi: 10.1046/j.1365-313x.2001.01194.x. PubMed DOI

Pijnacker LP, Ferwerda MA. Giemsa C-banding of potato chromosomes. Can J Genet Cytol. 1984;26(4):415–419. doi: 10.1139/g84-067. DOI

Shishido R, Sano Y, Fukui K. Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol Gen Genet. 2000;263(4):586–591. doi: 10.1007/s004380051205. PubMed DOI

Chang K-D, Fang S-A, Chang F-C, Chung M-C. Chromosomal conservation and sequence diversity of ribosomal RNA genes of two distant Oryza species. Genomics. 2010;96(3):181–190. doi: 10.1016/j.ygeno.2010.05.005. PubMed DOI

Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19(2):545–560. doi: 10.1016/0092-8674(80)90529-2. PubMed DOI

Schwarzacher T, Heslop-Harrison P. Practical in situ hybridization. 1st ed. Oxford: Bios Scientific Publishers Ltd; 2000.

Baum BR, Bailey LG, Belyayev A, Raskina O, Nevo E. The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes - a test on cultivated wheat and wheat progenitors. Genome. 2004;47(3):590–599. doi: 10.1139/g03-146. PubMed DOI

Raskina O, Belyayev A, Nevo E. Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosom Res. 2004;12(2):153–161. doi: 10.1023/B:CHRO.0000013168.61359.43. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...