Recent natural hybridization between two allopolyploid wheatgrasses (Elytrigia, Poaceae): ecological and evolutionary implications
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17562679
PubMed Central
PMC2735307
DOI
10.1093/aob/mcm093
PII: mcm093
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin MeSH
- DNA chloroplastová * MeSH
- ekosystém * MeSH
- fertilita genetika MeSH
- genetické markery MeSH
- genom rostlinný MeSH
- hybridizace genetická * MeSH
- lipnicovité genetika MeSH
- mezerníky ribozomální DNA MeSH
- polyploidie * MeSH
- průtoková cytometrie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA chloroplastová * MeSH
- genetické markery MeSH
- mezerníky ribozomální DNA MeSH
BACKGROUND AND AIMS: Natural hybridization was investigated between two predominantly allohexaploid wheatgrasses, weedy Elytrigia repens and steppic E. intermedia, with respect to habitats characterized by different degrees of anthropogenic disturbance. METHODS: Using flow cytometry (relative DNA content), 269 plants from three localities were analysed. Hybrids were further analysed using nuclear ribosomal (ITS1-5.8S-ITS2 region) and chloroplast (trnT-F region) DNA markers in addition to absolute DNA content and chromosome numbers. KEY RESULTS: Weedy E. repens was rare in a steppic locality whereas E. intermedia was almost absent at two sites of agricultural land-use. Nevertheless, hybrids were common there whereas none were found at the steppic locality, underlining the importance of different ecological conditions for hybrid formation or establishment. At one highly disturbed site, > 16 % of randomly collected plants were hybrids. Hexaploid hybrids showed intermediate genome size compared with the parents and additive patterns of parental ITS copies. Some evidence of backcrosses was found. The direction of hybridization was highly asymmetric as cpDNA identified E. intermedia as the maternal parent in 61 out of 63 cases. Out of nine nonaploid cytotypes (2n = 9x = 63) which likely originated by fusion of unreduced and reduced gametes of hexaploids, eight were hybrids whereas one was a nonaploid cytotype of E. repens. The progeny of one nonaploid hybrid demonstrated gene flow between hexaploid and nonaploid cytotypes. CONCLUSIONS: The results show that E. repens and E. intermedia frequently cross at places where they co-occur. Hybrid frequency is likely influenced by habitat type; sites disturbed by human influence sustain hybrid formation and/or establishment. Hexaploid and nonaploid hybrid fertility is not negligible, backcrossing is possible, and the progeny is variable. The frequent production of new at least partially fertile cyto- and genotypes provides ample raw material for evolution and adaptation.
Zobrazit více v PubMed
Abbott RJ. Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends in Ecology and Evolution. 1992;7:401–405. PubMed
Álvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution. 2003;29:417–434. PubMed
Arnold ML. Natural hybridization and evolution. New York, NY: Oxford University Press; 1997.
Arnold ML, Bennett BD. Natural hybridization in Louisiana irises: genetic variation and ecological determinants. In: Harrison RG, editor. Hybrid zones and the evolutionary processes. Oxford: Oxford University Press; 1993. pp. 115–139.
Arnold ML, Hodges SA. Are natural hybrids fit or unfit relative to their parents? Trends in Ecology and Evolution. 1995;10:67–71. PubMed
Ashton PA, Abbott RJ. Multiple origins and genetic diversity in the newly arisen allopolyploid species, Senecio cambrensis Rosser (Compositae) Heredity. 1992;68:25–32.
Assadi M. Biosystematic studies of the Elymus hispidus (Poaceae: Triticeae) group in Iran. Nordic Journal of Botany. 1998;18:483–491.
Assadi M, Runemark H. Hybridisation, genomic constitution and generic delimitation in Elymus s. l. (Poaceae: Triticeae) Plant Systematics and Evolution. 1995;194:189–205.
Barkworth ME, Dewey DR. Genomically based genera in the perennial Triticeae of North America: identification and membership. American Journal of Botany. 1985;72:767–776.
Barton NH, Hewitt GM. Analysis of hybrid zones. Annual Review of Ecology and Systematics. 1985;16:113–148.
Berchtold GF, Opiz PM. Oekonomisch-technische Flora Böhmens. Prag: JH Pospischil; 1836. I/2.
Campbell DR, Waser NM. Genotype-by-environment interaction and the fitness of plant hybrids in the wild. Evolution. 2001;55:669–676. PubMed
Campbell DR, Galen C, Wu CA. Ecophysiology of first and second generation hybrids in a natural plant hybrid zone. Oecologia. 2005;144:214–225. PubMed
Chen Q, Conner RL, Laroche A, Thomas JB. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome. 1998;41:580–586. PubMed
Chen Q, Conner RL, Laroche A, Ahmad F. Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum–Thinopyrum intermedium hybrids. Theoretical and Applied Genetics. 2001;102:847–852.
Chytrý M, Tichý L. Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. 2003;108:1–231.
Dewey DR. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP, editor. Gene manipulation in plant improvement. New York, NY: Plenum; 1984. pp. 209–279.
Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum. 1992;85:625–631.
Dubcovsky J, Dvořák J. Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics. 1995;140:1367–1377. PubMed PMC
Fedak G. Molecular aids for integration of alien chromatin through wide crosses. Genome. 1999;42:584–591.
Fedak G, Han F. Characterization of derivatives from wheat–Thinopyrum wide crosses. Cytogenetic and Genome Research. 2005;109:360–367. PubMed
Franke R, Nestrowicz R, Senula A, Staat B. Intergeneric hybrids between Triticum aestivum L. and wild Triticeae. Hereditas. 1992;116:225–231.
Friebe B, Gill KS, Tuleen NA, Gill BS. Transfer of wheat streak mosaic virus resistance from Agropyron intermedium into wheat. Crop Science. 1996;36:857–861.
Fuertes Aguilar J, Rosselló JA, Nieto Feliner G. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae) Molecular Ecology. 1999;8:1341–1346. PubMed
Gray AJ, Marshall DF, Raybould AF. A century of evolution in Spartina anglica. Advances in Ecological Research. 1991;21:1–62.
Greilhuber J, Doležel J, Lysák MA, Bennett MD. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Annals of Botany. 2005;95:255–260. PubMed PMC
Gross BL, Rieseberg LH. The ecological genetics of homoploid hybrid speciation. Journal of Heredity. 2005;96:241–252. PubMed PMC
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95–98.
Han FP, Fedak G, Benabdelmouna A, Armstrong K, Oullet T. Characterization of six wheat × Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome. 2003;46:490–495. PubMed
Kaplan Z, Fehrer J. Comparison of natural and artificial hybridization in Potamogeton. Preslia. 2006;78:303–316.
Kellogg EA, Appels R, Mason-Gamer RJ. When gene trees tell different stories: the diploid genera of Triticeae. Systematic Botany. 1996;21:312–347.
Kim SC, Rieseberg LH. Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics. 1999;153:965–977. PubMed PMC
Kirk H, Vrieling K, Klinkhamer GL. Maternal effects and heterosis influence the fitness of plant hybrids. New Phytologist. 2005a;166:685–694. PubMed
Kirk H, Vrieling K, Klinkhamer GL. Reproductive fitness of hybrids between Senecio jacobaea and S. aquaticus (Asteraceae) American Journal of Botany. 2005b;92:1467–1473. PubMed
Kishii M, Wang RR-C, Tsujimoto H. GISH analysis revealed a new aspect of genomic constitution of Thinopyrum intermedium. Czech Journal of Genetics and Plant Breeding. 2005;41:91–95.
Krahulcová A, Krahulec F, Kirschner J. Introgressive hybridization between a native and an introduced species: Viola lutea subsp. sudetica versus V. tricolor. Folia Geobotanica and Phytotaxonomica. 1996;31:219–244.
Krahulec F, Kaplan Z, Novák J. Tragopogon porrifolius × T. pratensis: the present state of an old hybrid population in Central Bohemia, the Czech Republic. Preslia. 2005;77:297–306.
Kubát K, Hrouda L, Chrtek J, Jr, Kaplan Z, Kirschner J, Štěpánek J. Klíč ke květeně České republiky [Key to the Flora of the Czech Republic] Praha: Academia; 2002.
Li D-Y, Zhang X-Y. Physical localization of the 18S-5·8S-26S rDNA and sequence analysis of ITS regions in Thinopyrum ponticum (Poaceae: Triticeae): implications for concerted evolution. Annals of Botany. 2002;90:445–452. PubMed PMC
Li D-Y, Ru Y-Y, Zhang X-Y. Chromosomal distribution of the 18S-5·8S-26S rDNA loci and heterogeneity of nuclear ITS regions in Thinopyrum intermedium (Poaceae: Triticeae) Acta Botanica Sinica. 2004;46:1234–1241.
Liu Z-W, Wang RR-C. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geniculata ssp. scythica, and Thinopyrum intermedium (Triticeae: Gramineae) Genome. 1993;36:102–111. PubMed
Löve Á. Conspectus of the Triticeae. Feddes Repertorium. 1984;95:425–521.
Mahelka V. Response to flooding intensity in Elytrigia repens, E. intermedia (Poaceae: Triticeae) and their hybrid. Weed Research. 2006;46:82–90.
Mahelka V, Suda J, Jarolímová V, Trávníček P, Krahulec F. Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae: Triticeae) and their hybrid. Folia Geobotanica. 2005;40:367–384.
Mandák B, Bímová K, Pyšek P, Štěpánek J, Plačková I. Isoenzyme diversity in Reynoutria (Polygonaceae) taxa: escape from sterility by hybridization. Plant Systematics and Evolution. 2005;253:219–230.
Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Systematic Biology. 2004;53:25–37. PubMed
Mason-Gamer RJ, Orme NL, Anderson CM. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome. 2002;45:991–1002. PubMed
Mason-Gamer RJ, Burns MM, Naum M. Polyploidy, introgression, and complex phylogenetic patterns within Elymus. Czech Journal of Genetics and Plant Breeding. 2005;41:21–26.
Melderis A. In: Elymus. In. Tutin TG, Heywood VH, Burges NA, et al., editors. Vol. 5. Cambridge: Cambridge University Press; 1980. pp. 192–198. Flora Europaea.
Mizianty M, Szczepaniak M. Remarks on the Agropyron–Elymus complex (Poaceae) with special reference to its representatives in Poland. Fragmenta Floristica et Geobotanica. 1997;42:215–225.
Mizianty M, Frey L, Szczepaniak M. The Agropyron–Elymus complex (Poaceae) in Poland: biosystematics. In: Frey L., editor. Studies on grasses in Poland. Krakow: PAN; 2001. pp. 25–77.
Mráz P, Chrtek J, Fehrer J, Plačková I. Rare recent natural hybridization in Hieracium s. str.–evidence from morphology, allozymes and chloroplast DNA. Plant Systematics and Evolution. 2005;255:177–192.
Ownbey M. Natural hybridization and amphiploidy in the genus Tragopogon. American Journal of Botany. 1950;37:487–499.
Palmer JH, Sagar GR. Agropyron repens (L.) Beauv. Biological flora of the British Isles. Journal of Ecology. 1963;51:783–794.
Prokudin YN, Druleva IV. Pro gibridnu prirodu piriyu zagostrenogo [Elytrigia mucronata (Opiz) Prokudin]. Ukrainskii Botanichnii Zhurnal. 1971;28:712–717.
Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics. 1998;29:467–501.
Refoufi A, Esnault M-A, Levasseur J-E. Characterization of a novel 9-ploid hybrid (2n = 63) with four genomes in an Elytrigia complex (Poaceae) Botanical Journal of the Linnean Society. 2005;147:501–508.
Rieseberg LH. Hybrid origins of plant species. Annual Review of Ecology and Systematics. 1997;28:359–389.
Rieseberg LH, Beckstrom-Sternberg S, Doan K. Helianthus annuus ssp. texanus has chloroplast DNA and nuclear ribosomal RNA genes of Helianthus debilis ssp. cucumerifolius. Proceedings of the National Academy of Sciences of the USA. 1990;87:593–597. PubMed PMC
Rieseberg LH, Choi HC, Ham D. Differential cytoplasmic versus nuclear introgression in Helianthus. Journal of Heredity. 1991;82:489–493.
Rieseberg LH, Baird SJ, Gardner KA. Hybridization, introgression, and linkage evolution. Plant Molecular Biology. 2000;42:205–224. PubMed
Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, et al. Major ecological transitions in wild sunflowers facilitated by hybridization. Science. 2003;301:1211–1216. PubMed
Sharma HC, Gill BS. New hybrids between Agropyron and wheat. 2. Production, morphology and cytogenetic analysis of F1 hybrids and backcross derivatives. Theoretical and Applied Genetics. 1983;66:111–121. PubMed
Sharma H, Ohm H, Goulart L, Lister R, Appels R, Benlhabib O. Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome. 1995;38:406–413. PubMed
Soltis PS, Plunkett GM, Novak SJ, Soltis DE. Genetic variation in Tragopogon species: additional origins of the allotetraploids T. mirus and T. miscellus (Compositae) American Journal of Botany. 1995;82:1329–1341.
Stebbins LG. The significance of polyploidy in plant evolution. American Naturalist. 1940;74:54–66.
Stebbins L. Taxonomy and the evolution of genera, with special reference to the family Gramineae. Evolution. 1956;10:235–245.
Štorchová H, Hrdličková R, Chrtek J, Jr, Tetera M, Fitze D, Fehrer J. An improved method for DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon. 2000;49:79–84.
Stutz HC, Thomas LK. Hybridization and introgression in Cowania and Purshia. Evolution. 1964;18:183–195.
Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology. 1991;17:1105–1109. PubMed
Tsitsin NN. Novyi vid i novye raznovidnosti pshenitsy [New species and varieties of wheats] Byulleten Glavnogo Botanicheskogo Sada AN SSSR. 1960;38:38–41.
Tsvelev N. Conspectus specierum tribus Triticeae Dum. familiae Poaceae in flora URSS. Novosti Systematiki Vysshikh Rastenii. 1973;10:19–59.
Wang H, McArthur ED, Sanderson SC, Graham JH, Freeman DC. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). IV. Reciprocal transplant experiments. Evolution. 1997;51:95–102. PubMed
Wendel JF. Genome evolution in polyploids. Plant Molecular Biology. 2000;42:225–249. PubMed
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T, editors. PCR protocols: a guide to methods and applications. San Diego, CA: Academic Press; 1990. pp. 315–322.