Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote

. 2024 Dec 03 ; 22 (1) : 281. [epub] 20241203

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39627879
Odkazy

PubMed 39627879
PubMed Central PMC11613528
DOI 10.1186/s12915-024-02080-z
PII: 10.1186/s12915-024-02080-z
Knihovny.cz E-zdroje

BACKGROUND: In trypanosomatids, a group of unicellular eukaryotes that includes numerous important human parasites, cis-splicing has been previously reported for only two genes: a poly(A) polymerase and an RNA helicase. Conversely, trans-splicing, which involves the attachment of a spliced leader sequence, is observed for nearly every protein-coding transcript. So far, our understanding of splicing in this protistan group has stemmed from the analysis of only a few medically relevant species. In this study, we used an extensive dataset encompassing all described trypanosomatid genera to investigate the distribution of intron-containing genes and the evolution of splice sites. RESULTS: We identified a new conserved intron-containing gene encoding an RNA-binding protein that is universally present in Kinetoplastea. We show that Perkinsela sp., a kinetoplastid endosymbiont of Amoebozoa, represents the first eukaryote completely devoid of cis-splicing, yet still preserving trans-splicing. We also provided evidence for reverse transcriptase-mediated intron loss in Kinetoplastea, extensive conservation of 5' splice sites, and the presence of non-coding RNAs within a subset of retained trypanosomatid introns. CONCLUSIONS: All three intron-containing genes identified in Kinetoplastea encode RNA-interacting proteins, with a potential to fine-tune the expression of multiple genes, thus challenging the perception of cis-splicing in these protists as a mere evolutionary relic. We suggest that there is a selective pressure to retain cis-splicing in trypanosomatids and that this is likely associated with overall control of mRNA processing. Our study provides new insights into the evolution of introns and, consequently, the regulation of gene expression in eukaryotes.

Zobrazit více v PubMed

Petrillo E. Do not panic: an intron-centric guide to alternative splicing. Plant Cell. 2023;35(6):1752–61. PubMed DOI PMC

Wilkinson ME, Charenton C, Nagai K. RNA splicing by the spliceosome. Annu Rev Biochem. 2020;89:359–88. PubMed DOI

Lei Q, Li C, Zuo ZX, Huang CH, Cheng HH, Zhou RJ. Evolutionary insights into RNA PubMed DOI PMC

Hudson AJ, McWatters DC, Bowser BA, Moore AN, Larue GE, Roy SW, et al. Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages. BMC Evol Biol. 2019;19(1):162. PubMed DOI PMC

Jo BS, Choi SS. Introns: the functional benefits of introns in genomes. Genomics Inform. 2015;13(4):112–8. PubMed DOI PMC

Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct. 2012;7:11. PubMed DOI PMC

Jeffares DC, Mourier T, Penny D. The biology of intron gain and loss. Trends Genet. 2006;22(1):16–22. PubMed DOI

Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, et al. Nucleomorph genome of PubMed DOI PMC

Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, Becnel JJ, et al. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res. 2012;22(12):2478–88. PubMed DOI PMC

Liang XH, Haritan A, Uliel S, Michaeli S. PubMed DOI PMC

Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, et al. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11(3): 200407. PubMed DOI PMC

Gawryluk RMR, Del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, et al. Morphological identification and single-cell genomics of marine diplonemids. Curr Biol. 2016;26(22):3053–9. PubMed DOI

Milanowski R, Karnkowska A, Ishikawa T, Zakrys B. Distribution of conventional and nonconventional introns in tubulin (alpha and beta) genes of euglenids. Mol Biol Evol. 2014;31(3):584–93. PubMed DOI PMC

Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, et al. Recent expansion of metabolic versatility in PubMed DOI PMC

Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, et al. Transcriptome, proteome and draft genome of PubMed DOI PMC

Günzl A. The pre-mRNA splicing machinery of trypanosomes: complex or simplified? Eukaryot Cell. 2010;9(8):1159–70. PubMed DOI PMC

Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GA. Genome-wide analysis of mRNA abundance in two life-cycle stages of PubMed DOI PMC

Chikne V, Gupta SK, Doniger T, K SR, Cohen-Chalamish S, Waldman Ben-Asher H, et al. The canonical poly(A) polymerase PAP1 polyadenylates non-coding RNAs and is essential for snoRNA biogenesis in PubMed

Rajan KS, Madmoni H, Bashan A, Taoka M, Aryal S, Nobe Y, et al. A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite PubMed DOI PMC

Mair G, Shi H, Li H, Djikeng A, Aviles HO, Bishop JR, et al. A new twist in trypanosome RNA metabolism: PubMed DOI PMC

Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al. The genome of the kinetoplastid parasite, PubMed DOI PMC

Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome PubMed DOI

Ma WK, Paudel BP, Xing Z, Sabath IG, Rueda D, Tran EJ. Recruitment, duplex unwinding and protein-mediated inhibition of the DEAD-box RNA helicase Dbp2 at actively transcribed chromatin. J Mol Biol. 2016;428(6):1091–106. PubMed DOI PMC

Lai YH, Choudhary K, Cloutier SC, Xing Z, Aviran S, Tran EJ. Genome-wide discovery of DEAD-box RNA helicase targets reveals RNA structural remodeling in transcription termination. Genetics. 2019;212(1):153–74. PubMed DOI PMC

Bond AT, Mangus DA, He F, Jacobson A. Absence of Dbp2p alters both nonsense-mediated mRNA decay and rRNA processing. Mol Cell Biol. 2001;21(21):7366–79. PubMed DOI PMC

Song QX, Lai CW, Liu NN, Hou XM, Xi XG. DEAD-box RNA helicase Dbp2 binds to G-quadruplex nucleic acids and regulates different conformation of G-quadruplex DNA. Biochem Biophys Res Commun. 2022;634:182–8. PubMed DOI

Kovalev N, Barajas D, Nagy PD. Similar roles for yeast Dbp2 and RH20 DEAD-box RNA helicases to Ded1 helicase in tombusvirus plus-strand synthesis. Virology. 2012;432(2):470–84. PubMed DOI

Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, Kostygov AY, et al. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genom. 2023;24(1):471. PubMed DOI PMC

Kostygov AY, Albanaz ATS, Butenko A, Gerasimov ES, Lukeš J, Yurchenko V. Phylogenetic framework to explore trait evolution in Trypanosomatidae. Trends Parasitol. 2024;40(2):96–9. PubMed DOI

Mertes C, Scheller IF, Yepez VA, Celik MH, Liang Y, Kremer LS, et al. Detection of aberrant splicing events in RNA-seq data using FRASER. Nat Commun. 2021;12(1):529. PubMed DOI PMC

De Gaudenzi J, Frasch AC, Clayton C. RNA-binding domain proteins in Kinetoplastids: a comparative analysis. Eukaryot Cell. 2005;4(12):2106–14. PubMed DOI PMC

Butenko A, Opperdoes FR, Flegontova O, Horak A, Hampl V, Keeling P, et al. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol. 2020;18(1):23. PubMed DOI PMC

Tanifuji G, Cenci U, Moog D, Dean S, Nakayama T, David V, et al. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci Rep. 2017;7:11688. PubMed DOI PMC

None

Kruse E, Goringer HU. Nanopore-based direct RNA sequencing of the PubMed PMC

Kruse E, Goringer HU. Nanopore-based direct RNA sequencing of the PubMed DOI PMC

Lucke S, Jurchott K, Hung LH, Bindereif A. mRNA splicing in PubMed DOI

Rearick D, Prakash A, McSweeny A, Shepard SS, Fedorova L, Fedorov A. Critical association of ncRNA with introns. Nucleic Acids Res. 2011;39(6):2357–66. PubMed DOI PMC

RNAcentral Consortium. RNAcentral: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res. 2021;2021(49):D212–20. PubMed PMC

Freitas Castro F, Ruy PC, Nogueira Zeviani K, Freitas Santos R, Simoes Toledo J, Kaysel CA. Evidence of putative non-coding RNAs from PubMed DOI

Freitas Castro F, Ruy PC, Nogueira Zeviani K, Freitas Santos R, Simoes Toledo J, Kaysel Cruz A. Evidence of putative non-coding RNAs from PubMed

Stark H, Dube P, Luhrmann R, Kastner B. Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature. 2001;409(6819):539–42. PubMed DOI

Djikeng A, Ferreira L, D’Angelo M, Dolezal P, Lamb T, Murta S, et al. Characterization of a candidate PubMed DOI

Breckenridge DG, Watanabe Y, Greenwood SJ, Gray MW, Schnare MN. U1 small nuclear RNA and spliceosomal introns in PubMed DOI PMC

Schnare MN, Gray MW. Spliced leader-associated RNA from PubMed DOI

Preußer C, Rossbach O, Hung LH, Li D, Bindereif A. Genome-wide RNA-binding analysis of the trypanosome U1 snRNP proteins U1C and U1–70K reveals PubMed DOI PMC

Cohen NE, Shen R, Carmel L. The role of reverse transcriptase in intron gain and loss mechanisms. Mol Biol Evol. 2012;29(1):179–86. PubMed DOI

Wang H, Devos KM, Bennetzen JL. Recurrent loss of specific introns during angiosperm evolution. PLoS Genet. 2014;10(12): e1004843. PubMed DOI PMC

Yurchenko V, Butenko A, Kostygov AY. Genomics of Trypanosomatidae: where we stand and what needs to be done? Pathogens. 2021;10(9):1124. PubMed DOI PMC

Roy SW, Gilbert W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006;7(3):211–21. PubMed DOI

Tikhonenkov DV, Gawryluk RMR, Mylnikov AP, Keeling PJ. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci Rep. 2021;11(1):2946. PubMed DOI PMC

Pita S, Diaz-Viraque F, Iraola G, Robello C. The Tritryps comparative repeatome: insights on repetitive element evolution in trypanosomatid pathogens. Genome Biol Evol. 2019;11(2):546–51. PubMed DOI PMC

Kondo Y, Oubridge C, van Roon AM, Nagai K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5’ splice site recognition. eLife. 2015;4:e04986. PubMed DOI PMC

Akinyi MV, Frilander MJ. At the intersection of major and minor spliceosomes: crosstalk mechanisms and their impact on gene expression. Front Genet. 2021;12: 700744. PubMed DOI PMC

Murray JI, Voelker RB, Henscheid KL, BryanWarf M, Berglund JA. Identification of motifs that function in the splicing of non-canonical introns. Genome Biol. 2008;9(6):R97. PubMed DOI PMC

Zhu T, Niu DK. Frequency of intron loss correlates with processed pseudogene abundance: a novel strategy to test the reverse transcriptase model of intron loss. BMC Biol. 2013;11:23. PubMed DOI PMC

Koch H, Raabe M, Urlaub H, Bindereif A, Preusser C. The polyadenylation complex of PubMed DOI PMC

Billington K, Halliday C, Madden R, Dyer P, Barker AR, Moreira-Leite FF, et al. Genome-wide subcellular protein map for the flagellate parasite PubMed DOI PMC

Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, Berriman M, et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 2011;21(6):915–24. PubMed DOI PMC

Wurst M, Robles A, Po J, Luu VD, Brems S, Marentije M, et al. An RNAi screen of the RRM-domain proteins of PubMed DOI

Singh A, Minia I, Droll D, Fadda A, Clayton C, Erben E. Trypanosome MKT1 and the RNA-binding protein ZC3H11: interactions and potential roles in post-transcriptional regulatory networks. Nucleic Acids Res. 2014;42(7):4652–68. PubMed DOI PMC

Doron-Mandel E, Koppel I, Abraham O, Rishal I, Smith TP, Buchanan CN, et al. The glycine arginine-rich domain of the RNA-binding protein nucleolin regulates its subcellular localization. EMBO J. 2021;40(20): e107158. PubMed DOI PMC

Chikne V, Shanmugha Rajan K, Shalev-Benami M, Decker K, Cohen-Chalamish S, Madmoni H, Biswas VK, Kumar Gupta S, Doniger T, Unger R, Tschudi C, Ullu E, Michaeli S. Small nucleolar RNAs controlling rRNA processing in PubMed PMC

Kramer S. Nuclear mRNA maturation and mRNA export control: from trypanosomes to opisthokonts. Parasitology. 2021;148(10):1196–218. PubMed DOI PMC

Parenteau J, Abou ES. Introns: good day junk is bad day treasure. Trends Genet. 2019;35(12):923–34. PubMed DOI

Girardini KN, Olthof AM, Kanadia RN. Introns: the “dark matter” of the eukaryotic genome. Front Genet. 2023;14:1150212. PubMed DOI PMC

Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, et al. Diversity of trypanosomatids in cockroaches and the description of PubMed DOI

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. PubMed DOI PMC

Andrews S. FastQC: A quality control tool for high throughput sequence data. 2010. Online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. PubMed DOI PMC

Skalický T, Dobáková E, Wheeler RJ, Tesařová M, Flegontov P, Jirsová D, Votýpka J, Yurchenko V, Ayala FJ, Lukeš J. Extensive flagellar remodeling during the complex life cycle of PubMed PMC

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. PubMed DOI PMC

Capella-Gutiérrez S, Silla-Martinez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. PubMed DOI PMC

Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 2021;49:D458–60. PubMed DOI PMC

Jarnot P, Ziemska-Legiecka J, Dobson L, Merski M, Mier P, Andrade-Navarro MA, et al. PlaToLoCo: the first web meta-server for visualization and annotation of low complexity regions in proteins. Nucleic Acids Res. 2020;48:W77–84. PubMed DOI PMC

Yuan D, Ahamed A, Burgin J, Cummins C, Devraj R, Gueye K, et al. The European Nucleotide Archive in 2023. Nucleic Acids Res. 2024;52:D92–7. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. PubMed DOI PMC

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. PubMed DOI PMC

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100. PubMed DOI PMC

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008. PubMed DOI PMC

Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28(4):464–9. PubMed DOI PMC

Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43:W39–49. PubMed DOI PMC

Mapleson D, Venturini L, Kaithakottil G, Swarbreck D. Efficient and accurate detection of splice junctions from RNA-seq with Portcullis. Gigascience. 2018;7(12):giy131. PubMed DOI PMC

NCBI BioProject https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB38965 (2023).

NCBI BioProject https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB60500 (2023).

NCBI BioProject https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB60502 (2023).

NCBI BioProject https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB60504 (2023).

NCBI BioProject https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB60505 (2023).

NCBI BioProject https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB39255 (2020).

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011;17(1):3.

Procter JB, Carstairs GM, Soares B, Mourao K, Ofoegbu TC, Barton D, et al. Alignment of biological sequences with Jalview. Methods Mol Biol. 2021;2231:203–24. PubMed DOI PMC

Bates PA, Tetley L. PubMed DOI

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90. PubMed DOI PMC

Cavalier-Smith T. Higher classification and phylogeny of Euglenozoa. Eur J Protistol. 2016;56:250–76. PubMed DOI

Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J. ACT: the Artemis Comparison Tool. Bioinformatics. 2005;21(16):3422–3. PubMed DOI

Shanmugasundram A, Starns D, Bohme U, Amos B, Wilkinson PA, Harb OS, et al. TriTrypDB: an integrated functional genomics resource for Kinetoplastida. PLoS Negl Trop Dis. 2023;17(1): e0011058. PubMed DOI PMC

Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, et al.

None

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. PubMed DOI PMC

Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10): e1002195. PubMed DOI PMC

Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al. InterPro in 2022. Nucleic Acids Res. 2023;51:D418–27. PubMed DOI PMC

Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R. Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol. 2007;3(4): e65. PubMed DOI PMC

Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–5. PubMed DOI PMC

Sato K, Kato Y, Hamada M, Akutsu T, Asai K. IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics. 2011;27(13):i85–93. PubMed DOI PMC

De Rijk P, Wuyts J, De Wachter R. RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics. 2003;19(2):299–300. PubMed DOI

Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26. PubMed PMC

Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Soding J, et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics. 2020;72(1): e108. PubMed DOI

Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49:D344–54. PubMed DOI PMC

Kostygov A, Skýpalová K, Kraeva N, Kalita E, McLeod C, Yurchenko V, Field M, Lukeš J, Butenko A.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...