Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
103261/Z/13/Z
Wellcome Trust - United Kingdom
PubMed
29078369
PubMed Central
PMC5676924
DOI
10.1073/pnas.1712311114
PII: 1712311114
Knihovny.cz E-zdroje
- Klíčová slova
- cytostome, evolution, flagellar remodeling, haptomonads, trypanosomatid,
- MeSH
- cytoskelet genetika MeSH
- flagella genetika MeSH
- fylogeneze MeSH
- genom protozoální genetika MeSH
- Leishmania genetika MeSH
- lidé MeSH
- protozoální proteiny genetika MeSH
- stadia vývoje genetika MeSH
- stanovení celkové genové exprese metody MeSH
- Trypanosoma cruzi genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
Paratrypanosoma confusum is a monoxenous kinetoplastid flagellate that constitutes the most basal branch of the highly diverse parasitic trypanosomatids, which include human pathogens Trypanosoma and Leishmania This makes Paratrypanosoma uniquely informative for the evolution of obligatory parasitism from free-living lifestyle and the evolution of human parasitism in some trypanosomatid lineages. It has typical promastigote morphology but also forms surface-attached haptomonads and amastigotes. Haptomonads form by attachment to a surface via a large bulge at the base of the flagellum, which is then remodeled into a thin attachment pad associated with flagellum shortening. Promastigotes and haptomonads multiply by binary division, and the progeny of a haptomonad can either remain attached or grow a flagellum and resume swimming. Whole genome sequencing and transcriptome profiling, in combination with analysis of the cell ultrastructure, reveal how the cell surface and metabolism are adapted to parasitism and how characteristic cytoskeletal features are conserved. Our data demonstrate that surface attachment by the flagellum and the flagellar pocket, a Leishmania-like flagellum attachment zone, and a Trypanosoma cruzi-like cytostome are ancestral features, while evolution of extant trypanosomatids, including the human parasites, is associated with genome streamlining and diversification of membrane proteins.
Department of Ecology and Evolutionary Biology University of California Irvine CA 92697
Department of Parasitology Faculty of Science Charles University 12844 Prague Czech Republic
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava 71000 Ostrava Czech Republic
Sir William Dunn School of Pathology University of Oxford Oxford OX1 3RE United Kingdom
Zobrazit více v PubMed
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. PubMed
Flegontov P, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23:1787–1793. PubMed
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 2016;63:657–678. PubMed
Jackson AP, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26:161–172. PubMed PMC
Ginger ML, Portman N, McKean PG. Swimming with protists: Perception, motility and flagellum assembly. Nat Rev Microbiol. 2008;6:838–850. PubMed
Wheeler RJ, Gluenz E, Gull K. Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum. Nat Commun. 2015;6:8964. PubMed PMC
Langousis G, Hill KL. Motility and more: The flagellum of Trypanosoma brucei. Nat Rev Microbiol. 2014;12:505–518. PubMed PMC
Szempruch AJ, et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 2016;164:246–257. PubMed PMC
Imhof S, et al. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication? F1000Res. 2016;5:682. PubMed PMC
Wheeler RJ, Gluenz E, Gull K. The limits on trypanosomatid morphological diversity. PLoS One. 2013;8:e79581. PubMed PMC
Wheeler RJ, Sunter JD, Gull K. Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J Cell Sci. 2016;129:854–867. PubMed PMC
Alcantara CL, Vidal JC, de Souza W, Cunha-e-Silva NL. The three-dimensional structure of the cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes. J Cell Sci. 2014;127:2227–2237. PubMed
Beattie P, Gull K. Cytoskeletal architecture and components involved in the attachment of Trypanosoma congolense epimastigotes. Parasitology. 1997;115:47–55. PubMed
Vickerman K, Tetley L. Flagellar surfaces of parasitic protozoa and their role in attachment. In: Bloodgood RA, editor. Ciliary and Flagellar Membranes. Booknews; London: 1990. pp. 267–304.
Wakid MH, Bates PA. Flagellar attachment of Leishmania promastigotes to plastic film in vitro. Exp Parasitol. 2004;106:173–178. PubMed
Killick-Kendrick R, Molyneux DH, Ashford RW. Leishmania in phlebotomid sandflies. I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sandfly. Proc R Soc Lond B Biol Sci. 1974;187:409–419. PubMed
del Pilar Corena M, et al. Carbonic anhydrase in the adult mosquito midgut. J Exp Biol. 2005;208:3263–3273. PubMed
Flegontov P, et al. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6:23704. PubMed PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. PubMed
Emms DM, Kelly S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. PubMed PMC
Lander N, et al. Localization and developmental regulation of a dispersed gene family 1 protein in Trypanosoma cruzi. Infect Immun. 2010;78:231–240. PubMed PMC
Lacomble S, Portman N, Gull K. A protein-protein interaction map of the Trypanosoma brucei paraflagellar rod. PLoS One. 2009;4:e7685. PubMed PMC
Fiebig M, Kelly S, Gluenz E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015;11:e1005186. PubMed PMC
Brooker BE. Fine structure of Bodo saltans and Bodo caudatus (Zoomastigophora: Protozoa) and their affinities with the Trypanosomatidae. Bull Br Mus Nat Hist. 1971;22:89–102.
Janouškovec J, Keeling PJ. Evolution: Causality and the origin of parasitism. Curr Biol. 2016;26:R174–R177. PubMed
A lineage-specific protein network at the trypanosome nuclear envelope
Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids
Formation and three-dimensional architecture of Leishmania adhesion in the sand fly vector
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus
Diversity and evolution of anuran trypanosomes: insights from the study of European species