Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid

. 2017 Oct 31 ; 114 (44) : 11757-11762. [epub] 20171016

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29078369

Grantová podpora
Wellcome Trust - United Kingdom
103261/Z/13/Z Wellcome Trust - United Kingdom

Paratrypanosoma confusum is a monoxenous kinetoplastid flagellate that constitutes the most basal branch of the highly diverse parasitic trypanosomatids, which include human pathogens Trypanosoma and Leishmania This makes Paratrypanosoma uniquely informative for the evolution of obligatory parasitism from free-living lifestyle and the evolution of human parasitism in some trypanosomatid lineages. It has typical promastigote morphology but also forms surface-attached haptomonads and amastigotes. Haptomonads form by attachment to a surface via a large bulge at the base of the flagellum, which is then remodeled into a thin attachment pad associated with flagellum shortening. Promastigotes and haptomonads multiply by binary division, and the progeny of a haptomonad can either remain attached or grow a flagellum and resume swimming. Whole genome sequencing and transcriptome profiling, in combination with analysis of the cell ultrastructure, reveal how the cell surface and metabolism are adapted to parasitism and how characteristic cytoskeletal features are conserved. Our data demonstrate that surface attachment by the flagellum and the flagellar pocket, a Leishmania-like flagellum attachment zone, and a Trypanosoma cruzi-like cytostome are ancestral features, while evolution of extant trypanosomatids, including the human parasites, is associated with genome streamlining and diversification of membrane proteins.

Zobrazit více v PubMed

Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed. Trends Parasitol. 2013;29:43–52. PubMed

Flegontov P, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23:1787–1793. PubMed

Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 2016;63:657–678. PubMed

Jackson AP, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016;26:161–172. PubMed PMC

Ginger ML, Portman N, McKean PG. Swimming with protists: Perception, motility and flagellum assembly. Nat Rev Microbiol. 2008;6:838–850. PubMed

Wheeler RJ, Gluenz E, Gull K. Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum. Nat Commun. 2015;6:8964. PubMed PMC

Langousis G, Hill KL. Motility and more: The flagellum of Trypanosoma brucei. Nat Rev Microbiol. 2014;12:505–518. PubMed PMC

Szempruch AJ, et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 2016;164:246–257. PubMed PMC

Imhof S, et al. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication? F1000Res. 2016;5:682. PubMed PMC

Wheeler RJ, Gluenz E, Gull K. The limits on trypanosomatid morphological diversity. PLoS One. 2013;8:e79581. PubMed PMC

Wheeler RJ, Sunter JD, Gull K. Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J Cell Sci. 2016;129:854–867. PubMed PMC

Alcantara CL, Vidal JC, de Souza W, Cunha-e-Silva NL. The three-dimensional structure of the cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes. J Cell Sci. 2014;127:2227–2237. PubMed

Beattie P, Gull K. Cytoskeletal architecture and components involved in the attachment of Trypanosoma congolense epimastigotes. Parasitology. 1997;115:47–55. PubMed

Vickerman K, Tetley L. Flagellar surfaces of parasitic protozoa and their role in attachment. In: Bloodgood RA, editor. Ciliary and Flagellar Membranes. Booknews; London: 1990. pp. 267–304.

Wakid MH, Bates PA. Flagellar attachment of Leishmania promastigotes to plastic film in vitro. Exp Parasitol. 2004;106:173–178. PubMed

Killick-Kendrick R, Molyneux DH, Ashford RW. Leishmania in phlebotomid sandflies. I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sandfly. Proc R Soc Lond B Biol Sci. 1974;187:409–419. PubMed

del Pilar Corena M, et al. Carbonic anhydrase in the adult mosquito midgut. J Exp Biol. 2005;208:3263–3273. PubMed

Flegontov P, et al. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6:23704. PubMed PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. PubMed

Emms DM, Kelly S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. PubMed PMC

Lander N, et al. Localization and developmental regulation of a dispersed gene family 1 protein in Trypanosoma cruzi. Infect Immun. 2010;78:231–240. PubMed PMC

Lacomble S, Portman N, Gull K. A protein-protein interaction map of the Trypanosoma brucei paraflagellar rod. PLoS One. 2009;4:e7685. PubMed PMC

Fiebig M, Kelly S, Gluenz E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015;11:e1005186. PubMed PMC

Brooker BE. Fine structure of Bodo saltans and Bodo caudatus (Zoomastigophora: Protozoa) and their affinities with the Trypanosomatidae. Bull Br Mus Nat Hist. 1971;22:89–102.

Janouškovec J, Keeling PJ. Evolution: Causality and the origin of parasitism. Curr Biol. 2016;26:R174–R177. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote

. 2024 Dec 03 ; 22 (1) : 281. [epub] 20241203

A lineage-specific protein network at the trypanosome nuclear envelope

. 2024 Dec ; 15 (1) : 2310452. [epub] 20240411

Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids

. 2024 Mar 02 ; 16 (3) : .

Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae

. 2023 Aug 21 ; 24 (1) : 471. [epub] 20230821

Formation and three-dimensional architecture of Leishmania adhesion in the sand fly vector

. 2023 May 10 ; 12 () : . [epub] 20230510

Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?

. 2021 Sep 02 ; 10 (9) : . [epub] 20210902

The kinesin of the flagellum attachment zone in Leishmania is required for cell morphogenesis, cell division and virulence in the mammalian host

. 2021 Jun ; 17 (6) : e1009666. [epub] 20210618

Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses

. 2021 Mar ; 11 (3) : 200407. [epub] 20210310

Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host

. 2020 Dec 02 ; 18 (1) : 187. [epub] 20201202

Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids

. 2020 Mar 02 ; 18 (1) : 23. [epub] 20200302

If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus

. 2020 ; 15 (1) : e0227832. [epub] 20200116

RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus

. 2018 Oct 16 ; 9 (5) : . [epub] 20181016

Diversity and evolution of anuran trypanosomes: insights from the study of European species

. 2018 Aug 02 ; 11 (1) : 447. [epub] 20180802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...