Visualization of Trypanosoma brucei flagellar pocket collar biogenesis identifies two new cytoskeletal structures
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41066504
PubMed Central
PMC12527162
DOI
10.1371/journal.pbio.3003429
PII: PBIOLOGY-D-25-01442
Knihovny.cz E-zdroje
- MeSH
- cytoskelet * metabolismus ultrastruktura MeSH
- flagella * metabolismus ultrastruktura MeSH
- mikrotubuly metabolismus ultrastruktura MeSH
- protozoální proteiny metabolismus MeSH
- Trypanosoma brucei brucei * metabolismus ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální proteiny MeSH
Understanding how cells assemble internal structures is central to cell biology. In Trypanosoma brucei, the flagellar pocket (FP) is essential for nutrient uptake, and immune evasion, and its formation depends on a cytoskeletal structure called the flagellar pocket collar (FPC). However, the mechanisms underlying FPC assembly remain poorly understood. In this study, we used cutting-edge ultrastructure expansion microscopy (U-ExM) to investigate FPC biogenesis in T. brucei. We mapped the formation of the proximal part of the new microtubule quartet (nMtQ) alongside flagellum growth, providing new insights into its assembly. Additionally, we tracked the localization dynamics of key structural proteins-BILBO1, MORN1, and BILBO2-during the biogenesis of the FPC and the hook complex (HC). Notably, we identified two previously undetected structures: the proFPC and the transient FPC-interconnecting fiber (FPC-IF), both of which appear to play crucial roles in linking and organizing cellular components during cell division. By uncovering these novel aspects of FPC biogenesis, our study significantly advances the understanding of cytoskeletal organization in trypanosomes and opens new avenues for exploring the functional significance of these structures.
Bordeaux INP Microbiologie Fondamentale et Pathogénicité UMR 5234 Bordeaux France
Max Perutz Labs Vienna Biocenter Medical University of Vienna Vienna Austria
Zobrazit více v PubMed
Gull K. The cytoskeleton of trypanosomatid parasites. Annu Rev Microbiol. 1999;53:629–55. doi: 10.1146/annurev.micro.53.1.629 PubMed DOI
Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell. 2007;131(3):505–15. PubMed
Field MC, Carrington M. The trypanosome flagellar pocket. Nat Rev Microbiol. 2009;7(11):775–86. doi: 10.1038/nrmicro2221 PubMed DOI
Bonhivers M, Nowacki S, Landrein N, Robinson DR. Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLoS Biol. 2008;6(5):e105. doi: 10.1371/journal.pbio.0060105 PubMed DOI PMC
Sherwin T, Gull K. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci. 1989;323(1218):573–88. doi: 10.1098/rstb.1989.0037 PubMed DOI
Vickerman K. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci. 1969;5(1):163–93. PubMed
Benmerah A. The ciliary pocket. Curr Opin Cell Biol. 2013;25(1):78–84. doi: 10.1016/j.ceb.2012.10.011 PubMed DOI
Ghossoub R, Molla-Herman A, Bastin P, Benmerah A. The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell. 2011;103(3):131–44. doi: 10.1042/BC20100128 PubMed DOI
Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, et al. Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J Cell Sci. 2009;122(Pt 8):1081–90. doi: 10.1242/jcs.045740 PubMed DOI PMC
Morriswood B. Form, fabric, and function of a flagellum-associated cytoskeletal structure. Cells. 2015;4(4):726–47. PubMed PMC
Alcantara CL, Vidal JC, Souza W de, Cunha-e-Silva NL. The three-dimensional structure of the cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes. J Cell Sci. 2014;127(10):2227–37. PubMed
Skalický T, Dobáková E, Wheeler RJ, Tesařová M, Flegontov P, Jirsová D, et al. Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc Natl Acad Sci U S A. 2017;114(44):11757–62. doi: 10.1073/pnas.1712311114 PubMed DOI PMC
Wheeler RJ, Sunter JD, Gull K. Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J Cell Sci. 2016;129(4):854–67. doi: 10.1242/jcs.183152 PubMed DOI PMC
Gorilak P, Pružincová M, Vachova H, Olšinová M, Schmidt Cernohorska M, Varga V. Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. Open Biol. 2021;11(9):210131. doi: 10.1098/rsob.210131 PubMed DOI PMC
Ikeda KN, de Graffenried CL. Polo-like kinase is necessary for flagellum inheritance in Trypanosoma brucei. J Cell Sci. 2012;125(Pt 13):3173–84. doi: 10.1242/jcs.101162 PubMed DOI
Esson HJ, Morriswood B, Yavuz S, Vidilaseris K, Dong G, Warren G. Morphology of the trypanosome bilobe, a novel cytoskeletal structure. Eukaryot Cell. 2012;11(6):761–72. doi: 10.1128/EC.05287-11 PubMed DOI PMC
Morriswood B, He CY, Sealey-Cardona M, Yelinek J, Pypaert M, Warren G. The bilobe structure of Trypanosoma brucei contains a MORN-repeat protein. Mol Biochem Parasitol. 2009;167(2):95–103. doi: 10.1016/j.molbiopara.2009.05.001 PubMed DOI
Florimond C, Sahin A, Vidilaseris K, Dong G, Landrein N, Dacheux D. BILBO1 Is a Scaffold Protein of the Flagellar Pocket Collar in the Pathogen Trypanosoma brucei. PLoS Pathog. 2015;11(3). PubMed PMC
Vidilaseris K, Shimanovskaya E, Esson HJ, Morriswood B, Dong G. Assembly mechanism of Trypanosoma brucei BILBO1, a multidomain cytoskeletal protein. J Biol Chem. 2014;289(34):23870–81. doi: 10.1074/jbc.M114.554659 PubMed DOI PMC
Perdomo D, Berdance E, Lallinger-Kube G, Sahin A, Dacheux D, Landrein N, et al. TbKINX1B: a novel BILBO1 partner and an essential protein in bloodstream form Trypanosoma brucei. Parasite. 2022;29:14. doi: 10.1051/parasite/2022015 PubMed DOI PMC
Isch C, Majneri P, Landrein N, Pivovarova Y, Lesigang J, Lauruol F, et al. Structural and functional studies of the first tripartite protein complex at the Trypanosoma brucei flagellar pocket collar. PLoS Pathog. 2021;17(8):e1009329. doi: 10.1371/journal.ppat.1009329 PubMed DOI PMC
Albisetti A, Florimond C, Landrein N, Vidilaseris K, Eggenspieler M, Lesigang J, et al. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei. PLoS Pathog. 2017;13(11):e1006710. doi: 10.1371/journal.ppat.1006710 PubMed DOI PMC
Broster Reix CE, Florimond C, Cayrel A, Mailhé A, Agnero-Rigot C, Landrein N, et al. Bhalin, an Essential Cytoskeleton-Associated Protein of Trypanosoma brucei Linking TbBILBO1 of the Flagellar Pocket Collar with the Hook Complex. Microorganisms. 2021;9(11):2334. doi: 10.3390/microorganisms9112334 PubMed DOI PMC
Gadelha C, Rothery S, Morphew M, McIntosh JR, Severs NJ, Gull K. Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes. Proc Natl Acad Sci U S A. 2009;106(41):17425–30. doi: 10.1073/pnas.0909289106 PubMed DOI PMC
Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR. Basal body movements orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei. J Cell Sci. 2010;123(17):2884–91. PubMed PMC
Kalichava A, Ochsenreiter T. Ultrastructure expansion microscopy in Trypanosoma brucei. Open Biol. 2021;11(10):210132. doi: 10.1098/rsob.210132 PubMed DOI PMC
Gheiratmand L, Brasseur A, Zhou Q, He CY. Biochemical Characterization of the Bi-lobe Reveals a Continuous Structural Network Linking the Bi-lobe to Other Single-copied Organelles in Trypanosoma brucei*. J Biol Chem. 2013. Feb 1;288(5):3489–99. PubMed PMC
Zhou Q, Kurasawa Y, Hu H, Souza Onofre T, Li Z. An orphan kinesin in Trypanosoma brucei regulates hook complex assembly and Golgi biogenesis. mBio. 2024;0(0):e02634-24. PubMed PMC
Moreira-Leite FF, Sherwin T, Kohl L, Gull K. A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science. 2001;294(5542):610–2. doi: 10.1126/science.1063775 PubMed DOI
M’Saad O, Bewersdorf J. Light microscopy of proteins in their ultrastructural context. Nature Communications. 2020;11:3850. PubMed PMC
Robinson DR, Sherwin T, Ploubidou A, Byard EH, Gull K. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol. 1995;128(6):1163–72. doi: 10.1083/jcb.128.6.1163 PubMed DOI PMC
Wheeler RJ, Sunter JD. Coordination of the cell cycle in trypanosomes. Annu Rev Microbiol. 2019;73(1):133–54. PubMed
Ramanantsalama MR, Landrein N, Casas E, Salin B, Blancard C, Bonhivers M, et al. TFK1, a basal body transition fibre protein that is essential for cytokinesis in Trypanosoma brucei. J Cell Sci. 2022;135(11):jcs259893. doi: 10.1242/jcs.259893 PubMed DOI
Portman N. Deconstructing the trypanosome cytoskeleton: from structures to functions via components and complexes. 2011. [cited 2025 February 3]. https://ora.ox.ac.uk/objects/uuid:e04fef74-b111-4992-aad6-ddb3169ff95b
Benz C, Müller N, Kaltenbrunner S, Váchová H, Vancová M, Lukeš J, et al. Kinetoplastid-specific X2-family kinesins interact with a kinesin-like pleckstrin homology domain protein that localizes to the trypanosomal microtubule quartet. Mol Microbiol. 2022;118(3):155–74. doi: 10.1111/mmi.14958 PubMed DOI
Höög JL, Lacomble S, Bouchet-Marquis C, Briggs L, Park K, Hoenger A, et al. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Negl Trop Dis. 2016;10(1):e0004312. doi: 10.1371/journal.pntd.0004312 PubMed DOI PMC
Morriswood B, Schmidt K. A MORN Repeat Protein Facilitates Protein Entry into the Flagellar Pocket of Trypanosoma brucei. Eukaryot Cell. 2015;14(11):1081–93. doi: 10.1128/EC.00094-15 PubMed DOI PMC
Lemos M, Mallet A, Bertiaux E, Imbert A, Rotureau B, Bastin P. Timing and original features of flagellum assembly in trypanosomes during development in the tsetse fly. Parasit Vectors. 2020;13(1):169. doi: 10.1186/s13071-020-04026-0 PubMed DOI PMC
Absalon S, Kohl L, Branche C, Blisnick T, Toutirais G, Rusconi F, et al. Basal body positioning is controlled by flagellum formation in Trypanosoma brucei. PLoS One. 2007;2(5):e437. doi: 10.1371/journal.pone.0000437 PubMed DOI PMC
Smithson L, Ihuoma Akazue P, Findlater L, Gwira TM, Vaughan S, Sunter JD. Diversity in new flagellum tip attachment in bloodstream form African trypanosomes. Mol Microbiol. 2022;118(5):510–25. doi: 10.1111/mmi.14979 PubMed DOI PMC
Pradel LC, Bonhivers M, Landrein N, Robinson DR. NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei. J Cell Sci. 2006;119(Pt 9):1852–63. doi: 10.1242/jcs.02900 PubMed DOI
Poon SK, Peacock L, Gibson W, Gull K, Kelly S. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2012;2(2):110037. doi: 10.1098/rsob.110037 PubMed DOI PMC
Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999;99(1):89–101. doi: 10.1016/s0166-6851(99)00002-x PubMed DOI
Schumann Burkard G, Jutzi P, Roditi I. Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol Biochem Parasitol. 2011;175(1):91–4. doi: 10.1016/j.molbiopara.2010.09.002 PubMed DOI
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5(1):140197. doi: 10.1098/rsob.140197 PubMed DOI PMC
Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D, Borgers S, et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods. 2019;16(1):71–4. doi: 10.1038/s41592-018-0238-1 PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. doi: 10.1038/nmeth.2089 PubMed DOI PMC