Imaging cellular ultrastructures using expansion microscopy (U-ExM)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30559430
PubMed Central
PMC6314451
DOI
10.1038/s41592-018-0238-1
PII: 10.1038/s41592-018-0238-1
Knihovny.cz E-zdroje
- MeSH
- elektronová mikroskopie metody MeSH
- fluorescenční mikroskopie metody MeSH
- mikrotubuly metabolismus MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Determining the structure and composition of macromolecular assemblies is a major challenge in biology. Here we describe ultrastructure expansion microscopy (U-ExM), an extension of expansion microscopy that allows the visualization of preserved ultrastructures by optical microscopy. This method allows for near-native expansion of diverse structures in vitro and in cells; when combined with super-resolution microscopy, it unveiled details of ultrastructural organization, such as centriolar chirality, that could otherwise be observed only by electron microscopy.
Abberior Instruments GmbH Göttingen Germany
Department of Biotechnology and Biophysics Biocenter University of Würzburg Würzburg Germany
Department of Cell Biology Sciences 3 University of Geneva Geneva Switzerland
Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group Lausanne Switzerland
ICube CNRS University of Strasbourg Illkirch France
Massachusetts Institute of Technology Cambridge MA USA
Signal Processing Core of Center for Biomedical Imaging EPFL Lausanne Switzerland
Zobrazit více v PubMed
Koster AJ, Klumperman J. Electron microscopy in cell biology: integrating structure and function. Nat Rev Mol Cell Biol. 2003;Suppl:SS6–10. PubMed
Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol. 2017;18:685–701. PubMed
Chen F, Tillberg PW, Boyden ES. Optical imaging. Expansion microscopy. Science. 2015;347:543–8. PubMed PMC
Chozinski TJ, et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods. 2016;13:485–488. PubMed PMC
Tillberg PW, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987–992. PubMed PMC
Ku T, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973–981. PubMed PMC
Hamel V, et al. Identification of Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human WDR90 in Ciliogenesis. Curr Biol. 2017;27:2486–2498.e6. PubMed PMC
Klena N, et al. Isolation and Fluorescence Imaging for Single-particle Reconstruction of Chlamydomonas Centrioles. JoVE. 2018:e58109. doi: 10.3791/58109. PubMed DOI PMC
Heilemann M, et al. Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes **. 2008:6172–6176. doi: 10.1002/anie.200802376. PubMed DOI
Fortun D, et al. Reconstruction from Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy. IEEE Trans Med Imaging. 2018:1–1. doi: 10.1109/TMI.2018.2795464. PubMed DOI
Heine J, et al. Adaptive-illumination STED nanoscopy. Proc Natl Acad Sci. 2017 doi: 10.1073/pnas.1708304114. 201708304. PubMed DOI PMC
Pigino G, et al. Cryoelectron tomography of radial spokes in cilia and flagella. J Cell Biol. 2011;195:673–87. PubMed PMC
Lechtreck KF, Geimer S. Distribution of polyglutamylated tubulin in the flagellar apparatus of green flagellates. Cell Motil Cytoskeleton. 2000;47:219–235. PubMed
Kubo T, Yanagisawa H aki, Yagi T, Hirono M, Kamiya R. Tubulin Polyglutamylation Regulates Axonemal Motility by Modulating Activities of Inner-Arm Dyneins. Curr Biol. 2010;20:441–445. PubMed
Kubo T, Oda T. Electrostatic interaction between polyglutamylated tubulin and the nexin–dynein regulatory complex regulates flagellar motility. Mol Biol Cell. 2017;28:2260–2266. PubMed PMC
Suryavanshi S, et al. Tubulin Glutamylation Regulates Ciliary Motility by Altering Inner Dynein Arm Activity. Curr Biol. 2010;20:435–440. PubMed PMC
Gao M, et al. Expansion Stimulated Emission Depletion Microscopy (ExSTED) ACS Nano. 2018;12:4178–4185. PubMed
Halpern AR, Alas GCM, Chozinski TJ, Paredez AR, Vaughan JC. Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization. ACS Nano. 2017;11:12677–12686. PubMed PMC
Yang TT, et al. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat Commun. 2018;9:1–11. PubMed PMC
Borlinghaus RT, Kappel C. HyVolution—the smart path to confocal super-resolution. Nat Methods. 2016;13:i–iii.
de Luca GMR, et al. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications. J Microsc. 2017;266:166–177. PubMed
Göttfert F, et al. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc Natl Acad Sci. 2017;114:2125–2130. PubMed PMC
Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM. ThunderSTORM: A comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. PubMed PMC
Wolter S, et al. rapidSTORM : accurate, fast open-source software for localization microscopy orcae : online resource for community annotation of eukaryotes. Nat Methods. 2012;9:1040–1. PubMed
Thevenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process. 1998;7:27–41. PubMed
Unser M, Soubies E, Soulez F, McCann M, Donati L. GlobalBioIm: A Unifying Computational Framework for Solving Inverse Problems. Imaging Appl Opt 2017 (3D, AIO, COSI, IS, MATH, pcAOP) 2017;2017 CTu1B.1.
Schindelin J, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. PubMed PMC
Schneider Ca, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. PubMed PMC
Royer LA, et al. ClearVolume: Open-source live 3D visualization for light-sheet microscopy. Nat Methods. 2015;12:480–481. PubMed
Visualisation of Euglena gracilis organelles and cytoskeleton using expansion microscopy
ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum
Imaging plant cells and organs with light-sheet and super-resolution microscopy
Prospects and limitations of expansion microscopy in chromatin ultrastructure determination
The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells