Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Ministry of Education
Youth and Sports of the Czech Republic
LUASK22033
MEYS
SK-CZ-RD-21-0038
Slovak Research and Development Agency
SGS/PrF/2024
University of Ostrava
SLG-5450
EMBO
PubMed
38447055
PubMed Central
PMC10946238
DOI
10.1093/gbe/evae042
PII: 7623289
Knihovny.cz E-zdroje
- Klíčová slova
- Krebs cycle, NAD+, NADP+, TCA cycle, cofactor preference, isocitrate dehydrogenase,
- MeSH
- isocitrátdehydrogenasa * genetika metabolismus MeSH
- isocitráty metabolismus MeSH
- NAD * metabolismus MeSH
- NADP metabolismus MeSH
- protein - isoformy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- isocitrátdehydrogenasa * MeSH
- isocitráty MeSH
- isocitric acid MeSH Prohlížeč
- NAD * MeSH
- NADP MeSH
- protein - isoformy MeSH
Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial isocitrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct metabolic strategies and needs for reduced cofactors in particular environments.
Department of Biochemistry Faculty of Natural Sciences Comenius University Bratislava Slovakia
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czechia
Zobrazit více v PubMed
Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, Kostygov AY, Lukeš J, Malysheva MN, Votýpka J, Zakharova A, et al. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genomics. 2023:24(1):471. 10.1186/s12864-023-09591-z. PubMed DOI PMC
Andrade-Alviárez D, Bonive-Boscan AD, Cáceres AJ, Quiñones W, Gualdrón-López M, Ginger ML, Michels PAM. Delineating transitions during the evolution of specialised peroxisomes: glycosome formation in kinetoplastid and diplonemid protists. Front Cell Dev Biol. 2022:10:979269. 10.3389/fcell.2022.979269. PubMed DOI PMC
Armenteros JJA, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019:2(5):e201900429. 10.26508/lsa.201900429. PubMed DOI PMC
Besteiro S, Barrett MP, Rivière L, Bringaud F. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends Parasitol. 2005:21(4):185–191. 10.1016/j.pt.2005.02.008. PubMed DOI
Bringaud F, Rivière L, Coustou V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol. 2006:149(1):1–9. 10.1016/j.molbiopara.2006.03.017. PubMed DOI
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009:10(1):421. 10.1186/1471-2105-10-421. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martinez JM, Gabaldon T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009:25(15):1972–1973. 10.1093/bioinformatics/btp348. PubMed DOI PMC
Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012:28(4):464–469. 10.1093/bioinformatics/btr703. PubMed DOI PMC
Castro H, Romao S, Carvalho S, Teixeira F, Sousa C, Tomás AM. Mitochondrial redox metabolism in trypanosomatids is independent of tryparedoxin activity. PLoS One. 2010:5(9):e12607. 10.1371/journal.pone.0012607. PubMed DOI PMC
Cavalcanti JH, Esteves-Ferreira AA, Quinhones CG, Pereira-Lima IA, Nunes-Nesi A, Fernie AR, Araújo WL. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biol Evol. 2014:6(10):2830–2848. 10.1093/gbe/evu221. PubMed DOI PMC
Chen X, Sun P, Liu Y, Shen S, Ma T, Ding J. Structures of a constitutively active mutant of human IDH3 reveal new insights into the mechanisms of allosteric activation and the catalytic reaction. J Biol Chem. 2022:298(12):102695. 10.1016/j.jbc.2022.102695. PubMed DOI PMC
Colasante C, Ellis M, Ruppert T, Voncken F. Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. Proteomics. 2006:6(11):3275–3293. 10.1002/pmic.200500668. PubMed DOI
Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupiáñez JA, del Río LA. Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol. 1999:121(3):921–928. 10.1104/pp.121.3.921. PubMed DOI PMC
Coustou V, Besteiro S, Biran M, Diolez P, Bouchaud V, Voisin P, Michels PA, Canioni P, Baltz T, Bringaud F. ATP generation in the Trypanosoma brucei procyclic form: cytosolic substrate level is essential, but not oxidative phosphorylation. J Biol Chem. 2003:278(49):49625–49635. 10.1074/jbc.M307872200. PubMed DOI
Dean AM, Lee MH, Koshland DE Jr. Phosphorylation inactivates Escherichia coli isocitrate dehydrogenase by preventing isocitrate binding. J Biol Chem. 1989:264(34):20482–20486. 10.1016/S0021-9258(19)47087-7. PubMed DOI
Durieux PO, Schütz P, Brun R, Köhler P. Alterations in Krebs cycle enzyme activities and carbohydrate catabolism in two strains of Trypanosoma brucei during in vitro differentiation of their bloodstream to procyclic stages. Mol Biochem Parasitol. 1991:45(1):19–27. 10.1016/0166-6851(91)90023-Y. PubMed DOI
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011:7(10):e1002195. 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Evans J, Sullivan J. Approximating model probabilities in Bayesian information criterion and decision-theoretic approaches to model selection in phylogenetics. Mol Biol Evol. 2011:28(1):343–349. 10.1093/molbev/msq195. PubMed DOI PMC
Fernández-Ramos C, Luque F, Fernández-Becerra C, Osuna A, Jankevicius SI, Jankevicius JV, Rosales MJ, Sánchez-Moreno M. Biochemical characterisation of flagellates isolated from fruits and seeds from Brazil. FEMS Microbiol Lett. 1999:170(2):343–348. 10.1111/j.1574-6968.1999.tb13393.x. DOI
Frolov AO, Kostygov AY, Yurchenko V. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol. 2021:37(6):538–551. 10.1016/j.pt.2021.02.004. PubMed DOI
Galland N, Demeure F, Hannaert V, Verplaetse E, Vertommen D, Van der Smissen P, Courtoy PJ, Michels PA. Characterization of the role of the receptors PEX5 and PEX7 in the import of proteins into glycosomes of Trypanosoma brucei. Biochim Biophys Acta. 2007:1773(4):521–535. 10.1016/j.bbamcr.2007.01.006. PubMed DOI
Giordana L, Nowicki C. Two phylogenetically divergent isocitrate dehydrogenases are encoded in Leishmania parasites. Molecular and functional characterization of Leishmania mexicana isoenzymes with specificity towards NAD+ and NADP+. Mol Biochem Parasitol. 2020:240:111320. 10.1016/j.molbiopara.2020.111320. PubMed DOI
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010:59(3):307–321. 10.1093/sysbio/syq010. PubMed DOI
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018:35(2):518–522. 10.1093/molbev/msx281. PubMed DOI PMC
Hurley JH, Chen R, Dean AM. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ -> NAD+ specificity-reversal mutant. Biochemistry. 1996:35(18):5670–5678. 10.1021/bi953001q. PubMed DOI
Jackson AP, Otto TD, Aslett M, Armstrong SD, Bringaud F, Schlacht A, Hartley C, Sanders M, Wastling JM, Dacks JB, et al. Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr Biol. 2016:26(2):161–172. 10.1016/j.cub.2015.11.055. PubMed DOI PMC
Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, et al. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem. 2001:276(19):16168–16176. 10.1074/jbc.M010120200. PubMed DOI
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017:14(6):587–589. 10.1038/nmeth.4285. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013:30(4):772–780. 10.1093/molbev/mst010. PubMed DOI PMC
Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY, Chang KT, Park JW, Park DC, Song BJ, Veech RL, et al. Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem. 2004:279(38):39968–39974. 10.1074/jbc.M402260200. PubMed DOI
Kostygov AY, Albanaz ATS, Butenko A, Gerasimov ES, Lukeš J, Yurchenko V. Phylogenetic framework to explore trait evolution in Trypanosomatidae. Trends Parasitol. 2024:40(2):96–99. 10.1016/j.pt.2023.11.009. PubMed DOI
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021:11(3):200407. 10.1098/rsob.200407. PubMed DOI PMC
Kovářová J, Barrett MP. The pentose phosphate pathway in parasitic trypanosomatids. Trends Parasitol. 2016:32(8):622–634. 10.1016/j.pt.2016.04.010. PubMed DOI
Kraeva N, Ishemgulova A, Lukeš J, Yurchenko V. Tetracycline-inducible gene expression system in Leishmania mexicana. Mol Biochem Parasitol. 2014:198(1):11–13. 10.1016/j.molbiopara.2014.11.002. PubMed DOI
Kume K, Amagasa T, Hashimoto T, Kitagawa H. NommPred: prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol Bioinform. 2018:14:1176934318819835. 10.1177/1176934318819835. PubMed DOI PMC
Lane N. Transformer: the deep chemistry of life and death. New York (NY): W.W. Norton & Co; 2022.
Leroux AE, Maugeri DA, Cazzulo JJ, Nowicki C. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Mol Biochem Parasitol. 2011:177(1):61–64. 10.1016/j.molbiopara.2011.01.010. PubMed DOI
Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell. 2014:55(2):253–263. 10.1016/j.molcel.2014.05.008. PubMed DOI PMC
Lin AP, McAlister-Henn L. Homologous binding sites in yeast isocitrate dehydrogenase for cofactor (NAD+) and allosteric activator (AMP). J Biol Chem. 2003:278(15):12864–12872. 10.1074/jbc.M300154200. PubMed DOI
Louassini M, Foulquie M, Benitez R, Adroher J. Citric-acid cycle key enzyme activities during in vitro growth and metacyclogenesis of Leishmania infantum promastigotes. J Parasitol. 1999:85(4):595–602. 10.2307/3285729. PubMed DOI
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014:195(2):115–122. 10.1016/j.molbiopara.2014.05.007. PubMed DOI
Meade JC, Glaser TA, Bonventre PF, Mukkada AJ. Enzymes of carbohydrate metabolism in Leishmania donovani amastigotes. J Protozool. 1984:31(1):156–161. 10.1111/j.1550-7408.1984.tb04307.x. PubMed DOI
Michels PAM, Villafraz O, Pineda E, Alencar MB, Cáceres AJ, Silber AM, Bringaud F. Carbohydrate metabolism in trypanosomatids: new insights revealing novel complexity, diversity and species-unique features. Exp Parasitol. 2021:224:108102. 10.1016/j.exppara.2021.108102. PubMed DOI
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021:49(D1):D412–D419. 10.1093/nar/gkaa913. PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015:32(1):268–274. 10.1093/molbev/msu300. PubMed DOI PMC
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 2016:63(5):657–678. 10.1111/jeu.12315. PubMed DOI
Opperdoes FR, Butenko A, Zakharova A, Gerasimov ES, Zimmer SL, Lukeš J, Yurchenko V. The remarkable metabolism of Vickermania ingenoplastis: genomic predictions. Pathogens. 2021:10(1):68. 10.3390/pathogens10010068. PubMed DOI PMC
Panigrahi AK, Zíková A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ, Stuart KD. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics. 2008:7(3):534–545. 10.1074/mcp.M700430-MCP200. PubMed DOI
Porcel BM, Denoeud F, Opperdoes F, Noel B, Madoui MA, Hammarton TC, Field MC, Da Silva C, Couloux A, Poulain J, et al. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet. 2014:10(2):e1004007. 10.1371/journal.pgen.1004007. PubMed DOI PMC
Pyrih J, Hammond M, Alves A, Dean S, Sunter JD, Wheeler RJ, Gull K, Lukeš J. Comprehensive sub-mitochondrial protein map of the parasitic protist Trypanosoma brucei defines critical features of organellar biology. Cell Rep. 2023:42(9):113083. 10.1016/j.celrep.2023.113083. PubMed DOI
Qi F, Chen X, Beard DA. Detailed kinetics and regulation of mammalian NAD-linked isocitrate dehydrogenase. Biochim Biophys Acta. 2008:1784(11):1641–1651. 10.1016/j.bbapap.2008.07.001. PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012:61(3):539–542. 10.1093/sysbio/sys029. PubMed DOI PMC
Saunders EC, Ng WW, Chambers JM, Ng M, Naderer T, Krömer JO, Likic VA, McConville MJ. Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA) anaplerosis, glutamate synthesis, and growth. J Biol Chem. 2011:286(31):27706–27717. 10.1074/jbc.M110.213553. PubMed DOI PMC
Saunders EC, Ng WW, Kloehn J, Chambers JM, Ng M, McConville MJ. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog. 2014:10(1):e1003888. 10.1371/journal.ppat.1003888. PubMed DOI PMC
Schenk R, Bachmaier S, Bringaud F, Boshart M. Efficient flavinylation of glycosomal fumarate reductase by its own ApbE domain in Trypanosoma brucei. FEBS J. 2021:288(18):5430–5445. 10.1111/febs.15812. PubMed DOI
Skalický T, Dobáková E, Wheeler RJ, Tesařová M, Flegontov P, Jirsová D, Votýpka J, Yurchenko V, Ayala FJ, Lukeš J. Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc Natl Acad Sci U S A. 2017:114(44):11757–11762. 10.1073/pnas.1712311114. PubMed DOI PMC
Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol. 2015:96(1):55–67. 10.1111/mmi.12920. PubMed DOI
Spaans SK, Weusthuis RA, van der Oost J, Kengen SW. NADPH-generating systems in bacteria and archaea. Front Microbiol. 2015:6:742. 10.3389/fmicb.2015.00742. PubMed DOI PMC
Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017:35(11):1026–1028. 10.1038/nbt.3988. PubMed DOI
Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, Reed S, Tarleton R. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest. 2008:118(4):1301–1310. 10.1172/JCI33945. PubMed DOI PMC
Thumuluri V, Armenteros JJA, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022:50(W1):W228–W234. 10.1093/nar/gkac278. PubMed DOI PMC
van Hellemond JJ, Opperdoes FR, Tielens AG. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem Soc Trans. 2005:33(5):967–971. 10.1042/BST0330967. PubMed DOI
van Weelden SW, Fast B, Vogt A, van der Meer P, Saas J, van Hellemond JJ, Tielens AG, Boshart M. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. J Biol Chem. 2003:278(15):12854–12863. 10.1074/jbc.M213190200. PubMed DOI
van Weelden SW, van Hellemond JJ, Opperdoes FR, Tielens AG. New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle. J Biol Chem. 2005:280(13):12451–12460. 10.1074/jbc.M412447200. PubMed DOI
Verner Z, Cermáková P, Skodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol. 2014:193(1):55–65. 10.1016/j.molbiopara.2014.02.003. PubMed DOI
Villafraz O, Biran M, Pineda E, Plazolles N, Cahoreau E, Ornitz Oliveira Souza R, Thonnus M, Allmann S, Tetaud E, Rivière L, et al. Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline. PLoS Pathog. 2021:17(3):e1009204. 10.1371/journal.ppat.1009204. PubMed DOI PMC
Vinekar R, Verma C, Ghosh I. Functional relevance of dynamic properties of dimeric NADP-dependent isocitrate dehydrogenases. BMC Bioinformatics. 2012:13(S17):S2. 10.1186/1471-2105-13-S17-S2. PubMed DOI PMC
Wang X, Inaoka DK, Shiba T, Balogun EO, Allmann S, Watanabe YI, Boshart M, Kita K, Harada S. Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from Trypanosoma brucei brucei. Protein Expr Purif. 2017:138:56–62. 10.1016/j.pep.2017.06.011. PubMed DOI
Wang P, Lv C, Zhu G. Novel type II and monomeric NAD+ specific isocitrate dehydrogenases: phylogenetic affinity, enzymatic characterization, and evolutionary implication. Sci Rep. 2015:5(1):9150. 10.1038/srep09150. PubMed DOI PMC
Wang HC, Minh BQ, Susko E, Roger AJ. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 2018:67(2):216–235. 10.1093/sysbio/syx068. PubMed DOI
Wargnies M, Plazolles N, Schenk R, Villafraz O, Dupuy JW, Biran M, Bachmaier S, Baudouin H, Clayton C, Boshart M, et al. Metabolic selection of a homologous recombination-mediated gene loss protects Trypanosoma brucei from ROS production by glycosomal fumarate reductase. J Biol Chem. 2021:296:100548. 10.1016/j.jbc.2021.100548. PubMed DOI PMC
Xiao W, Wang RS, Handy DE, Loscalzo J. 2018. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal. 28(3):251–272. 10.1089/ars.2017.7216. PubMed DOI PMC
Xu X, Zhao J, Xu Z, Peng B, Huang Q, Arnold E, Ding J. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem. 2004:279(32):33946–33957. 10.1074/jbc.M404298200. PubMed DOI
Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, Ševčík J, Votýpka J. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol. 2016:63(2):198–209. 10.1111/jeu.12268. PubMed DOI