Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
104111/Z/14/Z
Wellcome Trust - United Kingdom
PubMed
33647053
PubMed Central
PMC7951978
DOI
10.1371/journal.ppat.1009204
PII: PPATHOGENS-D-20-02673
Knihovny.cz E-zdroje
- MeSH
- citrátový cyklus účinky léků MeSH
- glukosa metabolismus MeSH
- hmyz - vektory parazitologie MeSH
- moucha tse-tse účinky léků parazitologie MeSH
- oxidace-redukce účinky léků MeSH
- prolin metabolismus farmakologie MeSH
- RNA interference fyziologie MeSH
- Trypanosoma brucei brucei účinky léků metabolismus MeSH
- Trypanosoma účinky léků metabolismus MeSH
- trypanozomóza africká farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukosa MeSH
- prolin MeSH
Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.
Institute of Parasitology Biology Center Czech Academy of Sciences České Budějovice Czech Republic
MetaToul MetaboHub National Infrastructure of Metabolomics and Fluxomics Toulouse France
RESTORE Université de Toulouse Inserm U1031 CNRS 5070 UPS EFS ENVT Toulouse France
Univ Bordeaux CNRS Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536 Bordeaux France
Univ Bordeaux CNRS Microbiologie Fondamentale et Pathogénicité UMR 5234 Bordeaux France
Zobrazit více v PubMed
Buscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet. 2017;390: 2397–2409. 10.1016/S0140-6736(17)31510-6 PubMed DOI
Opperdoes FR, Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in PubMed DOI
Visser N, Opperdoes FR. Glycolysis in PubMed DOI
Mazet M, Morand P, Biran M, Bouyssou G, Courtois P, Daulouede S, et al. Revisiting the central metabolism of the bloodstream forms of PubMed DOI PMC
Bringaud F, Riviere L, Coustou V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol. 2006;149: 1–9. S0166-6851(06)00115-0 [pii] 10.1016/j.molbiopara.2006.03.017 PubMed DOI
Lamour N, Riviere L, Coustou V, Coombs GH, Barrett MP, Bringaud F. Proline metabolism in procyclic PubMed DOI
Coustou V, Biran M, Breton M, Guegan F, Riviere L, Plazolles N, et al. Glucose-induced remodeling of intermediary and energy metabolism in procyclic PubMed DOI
Mantilla BS, Marchese L, Casas-Sanchez A, Dyer NA, Ejeh N, Biran M, et al. Proline metabolism is essential for PubMed DOI PMC
Bursell E. The role of proline in energy metabolism. New York: Plenum Press; 1981.
Obungu VH, Kiaira JK, Olembo NK, Njobu MR. Pathways of glucose catabolism on procyclic PubMed
Spitznagel D, Ebikeme C, Biran M, Nic A. Bhaird N, Bringaud F, Henehan GT, et al. Alanine aminotransferase of PubMed DOI
Duschak VG, Cazzulo JJ. Subcellular localization of glutamate dehydrogenases and alanine aminotransferase in epimastigotes of PubMed DOI
Allmann S, Morand P, Ebikeme C, Gales L, Biran M, Hubert J, et al. Cytosolic NADPH homeostasis in glucose-starved procyclic PubMed DOI PMC
Millerioux Y, Morand P, Biran M, Mazet M, Moreau P, Wargnies M, et al. ATP synthesis-coupled and -uncoupled acetate production from acetyl-CoA by the mitochondrial acetate:succinate CoA-transferase and acetyl-CoA thioesterase in PubMed DOI PMC
Van Weelden SW, Fast B, Vogt A, Van Der Meer P, Saas J, Van Hellemond JJ, et al. Procyclic PubMed DOI
van Hellemond JJ, Opperdoes FR, Tielens AG. The extraordinary mitochondrion and unusual citric acid cycle in PubMed DOI
Welburn SC, Arnold K, Maudlin I, Gooday GW. PubMed DOI
Hall RJ, Flanagan LA, Bottery MJ, Springthorpe V, Thorpe S, Darby AC, et al. A Tale of Three Species: Adaptation of PubMed DOI PMC
Ong HB, Lee WS, Patterson S, Wyllie S, Fairlamb AH. Homoserine and quorum-sensing acyl homoserine lactones as alternative sources of threonine: a potential role for homoserine kinase in insect-stage Trypanosoma brucei. Mol Microbiol. 2014;95: 143–156. 10.1111/mmi.12853 PubMed DOI PMC
Balogun RA. Studies on the amino acids of the tsetse fly, PubMed DOI
Millerioux Y, Ebikeme C, Biran M, Morand P, Bouyssou G, Vincent IM, et al. The threonine degradation pathway of the PubMed DOI PMC
Bringaud F, Biran M, Millerioux Y, Wargnies M, Allmann S, Mazet M. Combining reverse genetics and NMR-based metabolomics unravels trypanosome-specific metabolic pathways. Mol Microbiol. 2015;96: 917–926. 10.1111/mmi.12990 PubMed DOI
Wargnies M, Bertiaux E, Cahoreau E, Ziebart N, Crouzols A, Morand P, et al. Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathog. 2018;14: e1007502. 10.1371/journal.ppat.1007502 PubMed DOI PMC
Coustou V, Besteiro S, Riviere L, Biran M, Biteau N, Franconi JM, et al. A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic PubMed DOI
Coustou V, Biran M, Besteiro S, Riviere L, Baltz T, Franconi JM, et al. Fumarate is an essential intermediary metabolite produced by the procyclic PubMed DOI
Bringaud F, Ebikeme CE, Boshart M. Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology. 2010;137: 1315–1331. 10.1017/S0031182009991843 PubMed DOI
Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76: 444–95. 76/2/444 [pii] 10.1128/MMBR.05024-11 PubMed DOI PMC
Engqvist MK, Esser C, Maier A, Lercher MJ, Maurino VG. Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion. 2014;19 Pt B: 275–81. 10.1016/j.mito.2014.02.009 PubMed DOI
Intlekofer AM, Wang B, Liu H, Shah H, Carmona-Fontaine C, Rustenburg AS, et al. L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat Chem Biol. 2017;13: 494–500. 10.1038/nchembio.2307 PubMed DOI PMC
Johnston K, Kim DH, Kerkhoven EJ, Burchmore R, Barrett MP, Achcar F. Mapping the metabolism of five amino acids in bloodstream form PubMed DOI PMC
Bringaud F, Stripecke R, Frech GC, Freedland S, Turck C, Byrne EM, et al. Mitochondrial glutamate dehydrogenase from PubMed DOI PMC
Kolev NG, Ramey-Butler K, Cross GA, Ullu E, Tschudi C. Developmental progression to infectivity in PubMed DOI PMC
Urwyler S, Studer E, Renggli CK, Roditi I. A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of PubMed DOI
Dolezelova E, Kunzova M, Dejung M, Levin M, Panicucci B, Regnault C, et al. Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of PubMed DOI PMC
Emmer BT, Daniels MD, Taylor JM, Epting CL, Engman DM. Calflagin inhibition prolongs host survival and suppresses parasitemia in PubMed DOI PMC
Ryley JF. Studies on the metabolism of protozoa. 9. Comparative metabolism of bloodstream and culture forms of PubMed DOI PMC
Vickerman K. Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature. 1965;208: 762–6. 10.1038/208762a0 PubMed DOI
Flynn IW, Bowman IB. The metabolism of carbohydrate by pleomorphic African trypanosomes. Comp Biochem Physiol B. 1973;45: 25–42. 10.1016/0305-0491(73)90281-2 PubMed DOI
Bienen EJ, Maturi RK, Pollakis G, Clarkson AB. Non-cytochrome mediated mitochondrial ATP production in bloodstream form PubMed DOI
Dewar CE, MacGregor P, Cooper S, Gould MK, Matthews KR, Savill NJ, et al. Mitochondrial DNA is critical for longevity and metabolism of transmission stage PubMed DOI PMC
Wang X, Inaoka DK, Shiba T, Balogun EO, Allmann S, Watanabe YI, et al. Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from PubMed DOI
Riviere L, Moreau P, Allmann S, Hahn M, Biran M, Plazolles N, et al. Acetate produced in the mitochondrion is the essential precursor of lipid biosynthesis in procyclic trypanosomes. Proc Natl Aca Sci USA. 2009;106: 12694–12699. 10.1073/pnas.0903355106 PubMed DOI PMC
Forchhammer K, Selim KA. Carbon/Nitrogen Homeostasis Control in Cyanobacteria. FEMS Microbiol Rev. 2019. 10.1093/femsre/fuz025 PubMed DOI PMC
Li F, Xu W, Zhao S. Regulatory roles of metabolites in cell signaling networks. J Genet Genomics. 2013;40: 367–74. 10.1016/j.jgg.2013.05.002 PubMed DOI
Huergo LF, Dixon R. The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite. Microbiol Mol Biol Rev. 2015;79: 419–35. 10.1128/MMBR.00038-15 PubMed DOI PMC
Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O’Neill LA, et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab. 2019;1: 16–33. 10.1038/s42255-018-0014-7 PubMed DOI PMC
Rzem R, Vincent MF, Van Schaftingen E, Veiga-da-Cunha M. L-2-hydroxyglutaric aciduria, a defect of metabolite repair. J Inherit Metab Dis. 2007;30: 681–9. 10.1007/s10545-007-0487-0 PubMed DOI
Girard R, Crispim M, Alencar MB, Silber AM. Uptake of l-Alanine and Its Distinct Roles in the Bioenergetics of PubMed DOI PMC
Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005;69: 12–50. 10.1128/MMBR.69.1.12-50.2005 PubMed DOI PMC
Ghozlane A, Bringaud F, Souedan H, Dutour I, Jourdan F, Thébault P. Flux analysis of the PubMed DOI PMC
Brun R, Schonenberger M. Cultivation and in vitro cloning or procyclic culture forms of PubMed
Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in PubMed DOI
Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of PubMed DOI
Bringaud F, Baltz D, Baltz T. Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase. Proc Natl Acad Sci USA. 1998;95: 7963–8. 10.1073/pnas.95.14.7963 PubMed DOI PMC
Harlow E, Lane D. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press; 1988.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
Riviere L, van Weelden SW, Glass P, Vegh P, Coustou V, Biran M, et al. Acetyl:succinate CoA-transferase in procyclic PubMed DOI
Clayton CE. Import of fructose bisphosphate aldolase into the glycosomes of PubMed DOI PMC
Bringaud F, Peyruchaud S, Baltz D, Giroud C, Simpson L, Baltz T. Molecular characterization of the mitochondrial heat shock protein 60 gene from PubMed DOI
Chaudhuri M, Ajayi W, Hill GC. Biochemical and molecular properties of the PubMed DOI
Brown ED, Wood JM. Conformational change and membrane association of the PutA protein are coincident with reduction of its FAD cofactor by proline. J Biol Chem. 1993;268: 8972–9. PubMed
Bergmeyer HU, Bergmeyer J, Grassi M. Methods of enzymatic analysis. Wiley; 1983. 10.1016/0003-2697(83)90607-3 DOI
Aranda A, Maugeri D, Uttaro AD, Opperdoes F, Cazzulo JJ, Nowicki C. The malate dehydrogenase isoforms from PubMed DOI
Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids