Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
104111/Z/14/Z
Wellcome Trust - United Kingdom
PubMed
33647053
PubMed Central
PMC7951978
DOI
10.1371/journal.ppat.1009204
PII: PPATHOGENS-D-20-02673
Knihovny.cz E-resources
- MeSH
- Citric Acid Cycle drug effects MeSH
- Glucose metabolism MeSH
- Insect Vectors parasitology MeSH
- Tsetse Flies drug effects parasitology MeSH
- Oxidation-Reduction drug effects MeSH
- Proline metabolism pharmacology MeSH
- RNA Interference physiology MeSH
- Trypanosoma brucei brucei drug effects metabolism MeSH
- Trypanosoma drug effects metabolism MeSH
- Trypanosomiasis, African drug therapy MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Glucose MeSH
- Proline MeSH
Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.
Institute of Parasitology Biology Center Czech Academy of Sciences České Budějovice Czech Republic
MetaToul MetaboHub National Infrastructure of Metabolomics and Fluxomics Toulouse France
RESTORE Université de Toulouse Inserm U1031 CNRS 5070 UPS EFS ENVT Toulouse France
Univ Bordeaux CNRS Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536 Bordeaux France
Univ Bordeaux CNRS Microbiologie Fondamentale et Pathogénicité UMR 5234 Bordeaux France
See more in PubMed
Buscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet. 2017;390: 2397–2409. 10.1016/S0140-6736(17)31510-6 PubMed DOI
Opperdoes FR, Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 1977;80: 360–4. 0014-5793(77)80476-6 [pii] 10.1016/0014-5793(77)80476-6 PubMed DOI
Visser N, Opperdoes FR. Glycolysis in Trypanosoma brucei. Eur J Biochem. 1980;103: 623–32. 10.1111/j.1432-1033.1980.tb05988.x PubMed DOI
Mazet M, Morand P, Biran M, Bouyssou G, Courtois P, Daulouede S, et al.. Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability. PLoS Negl Trop Dis. 2013;7: e2587. 10.1371/journal.pntd.0002587 PNTD-D-13-01131 [pii] PubMed DOI PMC
Bringaud F, Riviere L, Coustou V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol. 2006;149: 1–9. S0166-6851(06)00115-0 [pii] 10.1016/j.molbiopara.2006.03.017 PubMed DOI
Lamour N, Riviere L, Coustou V, Coombs GH, Barrett MP, Bringaud F. Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. J Biol Chem. 2005;280: 11902–11910. 10.1074/jbc.M414274200 PubMed DOI
Coustou V, Biran M, Breton M, Guegan F, Riviere L, Plazolles N, et al.. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J Biol Chem. 2008;283: 16342–54. M709592200 [pii] 10.1074/jbc.M709592200 PubMed DOI
Mantilla BS, Marchese L, Casas-Sanchez A, Dyer NA, Ejeh N, Biran M, et al.. Proline metabolism is essential for Trypanosoma brucei brucei survival in the tsetse vector. PLoS Pathog. 2017;13: e1006158. 10.1371/journal.ppat.1006158 PubMed DOI PMC
Bursell E. The role of proline in energy metabolism. New York: Plenum Press; 1981.
Obungu VH, Kiaira JK, Olembo NK, Njobu MR. Pathways of glucose catabolism on procyclic Trypanosoma congolense. Indian J Biochem Biophys. 1999;36: 305–11. PubMed
Spitznagel D, Ebikeme C, Biran M, Nic A. Bhaird N, Bringaud F, Henehan GT, et al.. Alanine aminotransferase of Trypanosoma brucei—a key role in proline metabolism in procyclic life forms. FEBS J. 2009;276: 7187–7199. EJB7432 [pii] 10.1111/j.1742-4658.2009.07432.x PubMed DOI
Duschak VG, Cazzulo JJ. Subcellular localization of glutamate dehydrogenases and alanine aminotransferase in epimastigotes of Trypanosoma cruzi. FEMS Microbiol Lett. 1991;67: 131–5. 10.1016/0378-1097(91)90343-9 PubMed DOI
Allmann S, Morand P, Ebikeme C, Gales L, Biran M, Hubert J, et al.. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux. J Biol Chem. 2013;288: 18494–505. M113.462978 [pii] 10.1074/jbc.M113.462978 PubMed DOI PMC
Millerioux Y, Morand P, Biran M, Mazet M, Moreau P, Wargnies M, et al.. ATP synthesis-coupled and -uncoupled acetate production from acetyl-CoA by the mitochondrial acetate:succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma. J Biol Chem. 2012;287: 17186–17197. M112.355404 [pii] 10.1074/jbc.M112.355404 PubMed DOI PMC
Van Weelden SW, Fast B, Vogt A, Van Der Meer P, Saas J, Van Hellemond JJ, et al.. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. J Biol Chem. 2003;278: 12854–12863. 10.1074/jbc.M213190200 PubMed DOI
van Hellemond JJ, Opperdoes FR, Tielens AG. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem Soc Trans. 2005;33: 967–71. 10.1042/BST20050967 PubMed DOI
Welburn SC, Arnold K, Maudlin I, Gooday GW. Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by tsetse flies. Parasitology. 1993;107 (Pt 2): 141–5. 10.1017/s003118200006724x PubMed DOI
Hall RJ, Flanagan LA, Bottery MJ, Springthorpe V, Thorpe S, Darby AC, et al.. A Tale of Three Species: Adaptation of Sodalis glossinidius to Tsetse Biology, Wigglesworthia Metabolism, and Host Diet. MBio. 2019;10. 10.1128/mBio.02106-18 PubMed DOI PMC
Ong HB, Lee WS, Patterson S, Wyllie S, Fairlamb AH. Homoserine and quorum-sensing acyl homoserine lactones as alternative sources of threonine: a potential role for homoserine kinase in insect-stage Trypanosoma brucei. Mol Microbiol. 2014;95: 143–156. 10.1111/mmi.12853 PubMed DOI PMC
Balogun RA. Studies on the amino acids of the tsetse fly, Glossina morsitans, maintained on in vitro and in vivo feeding systems. Comp Biochem Physiol Comp Physiol. 1974;49: 215–22. 10.1016/0300-9629(74)90110-8 PubMed DOI
Millerioux Y, Ebikeme C, Biran M, Morand P, Bouyssou G, Vincent IM, et al.. The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control. Mol Microbiol. 2013;90: 114–129. 10.1111/mmi.12351 PubMed DOI PMC
Bringaud F, Biran M, Millerioux Y, Wargnies M, Allmann S, Mazet M. Combining reverse genetics and NMR-based metabolomics unravels trypanosome-specific metabolic pathways. Mol Microbiol. 2015;96: 917–926. 10.1111/mmi.12990 PubMed DOI
Wargnies M, Bertiaux E, Cahoreau E, Ziebart N, Crouzols A, Morand P, et al.. Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathog. 2018;14: e1007502. 10.1371/journal.ppat.1007502 PubMed DOI PMC
Coustou V, Besteiro S, Riviere L, Biran M, Biteau N, Franconi JM, et al.. A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei. J Biol Chem. 2005;280: 16559–70. 10.1074/jbc.M500343200 PubMed DOI
Coustou V, Biran M, Besteiro S, Riviere L, Baltz T, Franconi JM, et al.. Fumarate is an essential intermediary metabolite produced by the procyclic Trypanosoma brucei. J Biol Chem. 2006;281: 26832–46. 10.1074/jbc.M601377200 PubMed DOI
Bringaud F, Ebikeme CE, Boshart M. Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology. 2010;137: 1315–1331. 10.1017/S0031182009991843 PubMed DOI
Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, et al.. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 2012;76: 444–95. 76/2/444 [pii] 10.1128/MMBR.05024-11 PubMed DOI PMC
Engqvist MK, Esser C, Maier A, Lercher MJ, Maurino VG. Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion. 2014;19 Pt B: 275–81. 10.1016/j.mito.2014.02.009 PubMed DOI
Intlekofer AM, Wang B, Liu H, Shah H, Carmona-Fontaine C, Rustenburg AS, et al.. L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat Chem Biol. 2017;13: 494–500. 10.1038/nchembio.2307 PubMed DOI PMC
Johnston K, Kim DH, Kerkhoven EJ, Burchmore R, Barrett MP, Achcar F. Mapping the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U-(13)C-labelled substrates and LC-MS. Biosci Rep. 2019;39. 10.1042/BSR20181601 PubMed DOI PMC
Bringaud F, Stripecke R, Frech GC, Freedland S, Turck C, Byrne EM, et al.. Mitochondrial glutamate dehydrogenase from Leishmania tarentolae is a guide RNA-binding protein. Mol Cell Biol. 1997;17: 3915–23. 10.1128/mcb.17.7.3915 PubMed DOI PMC
Kolev NG, Ramey-Butler K, Cross GA, Ullu E, Tschudi C. Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein. Science. 2012;338: 1352–3. 338/6112/1352 [pii] 10.1126/science.1229641 PubMed DOI PMC
Urwyler S, Studer E, Renggli CK, Roditi I. A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol Microbiol. 2007;63: 218–228. 10.1111/j.1365-2958.2006.05492.x PubMed DOI
Dolezelova E, Kunzova M, Dejung M, Levin M, Panicucci B, Regnault C, et al.. Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biol. 2020;18: e3000741. 10.1371/journal.pbio.3000741 PubMed DOI PMC
Emmer BT, Daniels MD, Taylor JM, Epting CL, Engman DM. Calflagin inhibition prolongs host survival and suppresses parasitemia in Trypanosoma brucei infection. Eukaryot Cell. 2010;9: 934–42. 10.1128/EC.00086-10 PubMed DOI PMC
Ryley JF. Studies on the metabolism of protozoa. 9. Comparative metabolism of bloodstream and culture forms of Trypanosoma rhodesiense. Biochem J. 1962;85: 211–223. 10.1042/bj0850211 PubMed DOI PMC
Vickerman K. Polymorphism and mitochondrial activity in sleeping sickness trypanosomes. Nature. 1965;208: 762–6. 10.1038/208762a0 PubMed DOI
Flynn IW, Bowman IB. The metabolism of carbohydrate by pleomorphic African trypanosomes. Comp Biochem Physiol B. 1973;45: 25–42. 10.1016/0305-0491(73)90281-2 PubMed DOI
Bienen EJ, Maturi RK, Pollakis G, Clarkson AB. Non-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei. Eur J Biochem. 1993;216: 75–80. 10.1111/j.1432-1033.1993.tb18118.x PubMed DOI
Dewar CE, MacGregor P, Cooper S, Gould MK, Matthews KR, Savill NJ, et al.. Mitochondrial DNA is critical for longevity and metabolism of transmission stage Trypanosoma brucei. PLoS Pathog. 2018;14: e1007195. 10.1371/journal.ppat.1007195 PubMed DOI PMC
Wang X, Inaoka DK, Shiba T, Balogun EO, Allmann S, Watanabe YI, et al.. Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from Trypanosoma brucei brucei. Protein Expr Purif. 2017;138: 56–62. 10.1016/j.pep.2017.06.011 PubMed DOI
Riviere L, Moreau P, Allmann S, Hahn M, Biran M, Plazolles N, et al.. Acetate produced in the mitochondrion is the essential precursor of lipid biosynthesis in procyclic trypanosomes. Proc Natl Aca Sci USA. 2009;106: 12694–12699. 10.1073/pnas.0903355106 PubMed DOI PMC
Forchhammer K, Selim KA. Carbon/Nitrogen Homeostasis Control in Cyanobacteria. FEMS Microbiol Rev. 2019. 10.1093/femsre/fuz025 PubMed DOI PMC
Li F, Xu W, Zhao S. Regulatory roles of metabolites in cell signaling networks. J Genet Genomics. 2013;40: 367–74. 10.1016/j.jgg.2013.05.002 PubMed DOI
Huergo LF, Dixon R. The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite. Microbiol Mol Biol Rev. 2015;79: 419–35. 10.1128/MMBR.00038-15 PubMed DOI PMC
Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O’Neill LA, et al.. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab. 2019;1: 16–33. 10.1038/s42255-018-0014-7 PubMed DOI PMC
Rzem R, Vincent MF, Van Schaftingen E, Veiga-da-Cunha M. L-2-hydroxyglutaric aciduria, a defect of metabolite repair. J Inherit Metab Dis. 2007;30: 681–9. 10.1007/s10545-007-0487-0 PubMed DOI
Girard R, Crispim M, Alencar MB, Silber AM. Uptake of l-Alanine and Its Distinct Roles in the Bioenergetics of Trypanosoma cruzi. mSphere. 2018;3. 10.1128/mSphereDirect.00338-18 PubMed DOI PMC
Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005;69: 12–50. 10.1128/MMBR.69.1.12-50.2005 PubMed DOI PMC
Ghozlane A, Bringaud F, Souedan H, Dutour I, Jourdan F, Thébault P. Flux analysis of the Trypanosoma brucei glycolysis based on a multiobjective-criteria bioinformatic approach. Adv Bioinforma. 2012;2012: 159423. 10.1155/2012/159423 PubMed DOI PMC
Brun R, Schonenberger M. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 1979;36: 289–92. PubMed
Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999;99: 89–101. 10.1016/s0166-6851(99)00002-x PubMed DOI
Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol Biochem Parasitol. 2002;125: 211–6. 10.1016/s0166-6851(02)00238-4 PubMed DOI
Bringaud F, Baltz D, Baltz T. Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase. Proc Natl Acad Sci USA. 1998;95: 7963–8. 10.1073/pnas.95.14.7963 PubMed DOI PMC
Harlow E, Lane D. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press; 1988.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
Riviere L, van Weelden SW, Glass P, Vegh P, Coustou V, Biran M, et al.. Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism. J Biol Chem. 2004;279: 45337–46. 10.1074/jbc.M407513200 M407513200 [pii] PubMed DOI
Clayton CE. Import of fructose bisphosphate aldolase into the glycosomes of Trypanosoma brucei. J Cell Biol. 1987;105: 2649–54. 10.1083/jcb.105.6.2649 PubMed DOI PMC
Bringaud F, Peyruchaud S, Baltz D, Giroud C, Simpson L, Baltz T. Molecular characterization of the mitochondrial heat shock protein 60 gene from Trypanosoma brucei. Mol Biochem Parasitol. 1995;74: 119–23. 10.1016/0166-6851(95)02486-7 PubMed DOI
Chaudhuri M, Ajayi W, Hill GC. Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. Mol Biochem Parasitol. 1998;95: 53–68. 10.1016/s0166-6851(98)00091-7 PubMed DOI
Brown ED, Wood JM. Conformational change and membrane association of the PutA protein are coincident with reduction of its FAD cofactor by proline. J Biol Chem. 1993;268: 8972–9. PubMed
Bergmeyer HU, Bergmeyer J, Grassi M. Methods of enzymatic analysis. Wiley; 1983. 10.1016/0003-2697(83)90607-3 DOI
Aranda A, Maugeri D, Uttaro AD, Opperdoes F, Cazzulo JJ, Nowicki C. The malate dehydrogenase isoforms from Trypanosoma brucei: subcellular localization and differential expression in bloodstream and procyclic forms. Int J Parasitol. 2006;36: 295–307. 10.1016/j.ijpara.2005.09.013 PubMed DOI
Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids