Splicing
Dotaz
Zobrazit nápovědu
Acceptor splice site recognition (3' splice site: 3'ss) is a fundamental step in precursor messenger RNA (pre-mRNA) splicing. Generally, the U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF) heterodimer recognizes the 3'ss, of which U2AF35 has a dual function: (i) It binds to the intron-exon border of some 3'ss and (ii) mediates enhancer-binding splicing activators' interactions with the spliceosome. Alternative mechanisms for 3'ss recognition have been suggested, yet they are still not thoroughly understood. Here, we analyzed 3'ss recognition where the intron-exon border is bound by a ubiquitous splicing regulator SRSF1. Using the minigene analysis of two model exons and their mutants, BRCA2 exon 12 and VARS2 exon 17, we showed that the exon inclusion correlated much better with the predicted SRSF1 affinity than 3'ss quality, which were assessed using the Catalog of Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA) database and maximum entropy algorithm (MaxEnt) predictor and the U2AF35 consensus matrix, respectively. RNA affinity purification proved SRSF1 binding to the model 3'ss. On the other hand, knockdown experiments revealed that U2AF35 also plays a role in these exons' inclusion. Most probably, both factors stochastically bind the 3'ss, supporting exon recognition, more apparently in VARS2 exon 17. Identifying splicing activators as 3'ss recognition factors is crucial for both a basic understanding of splicing regulation and human genetic diagnostics when assessing variants' effects on splicing.
- MeSH
- alternativní sestřih genetika MeSH
- exony genetika MeSH
- HeLa buňky MeSH
- introny genetika MeSH
- lidé MeSH
- místa sestřihu RNA genetika fyziologie MeSH
- proteiny vázající RNA metabolismus MeSH
- regulační oblasti nukleových kyselin genetika MeSH
- sekvence nukleotidů genetika MeSH
- serin-arginin sestřihové faktory metabolismus MeSH
- sestřih RNA fyziologie MeSH
- sestřihové faktory metabolismus fyziologie MeSH
- sestřihový faktor U2AF metabolismus MeSH
- spliceozomy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Trans-splicing is a process by which 5'- and 3'-ends of two pre-RNA molecules transcribed from different sites of the genome can be joined together to form a single RNA molecule. The spliced leader (SL) trans-splicing is mediated by the spliceosome and it allows the replacement of 5'-end of pre-mRNA by 5'(SL)-end of SL-RNA. This form of splicing has been observed in many phylogenetically unrelated eukaryotes. Either the SL trans-splicing (SLTS) originated in the last eukaryotic common ancestor (LECA) (or even earlier) and it was lost in most eukaryotic lineages, or this mechanism of RNA processing evolved several times independently in various unrelated eukaryotic taxa. The bioinformatic comparisons of SL-RNAs from various eukaryotic taxonomic groups have revealed the similarities of secondary structures of most SL-RNAs and a relative conservation of their splice sites (SSs) and Sm-binding sites (SmBSs). We propose that such structural and functional similarities of SL-RNAs are unlikely to have evolved repeatedly many times. Hence, we favor the scenario of an early evolutionary origin for the SLTS and multiple losses of SL-RNAs in various eukaryotic lineages.
BACKGROUND/AIM: Colorectal cancer is currently the third leading cause of cancer-related deaths and recently, alternative splicing has risen as its important regulator and potential treatment target. In the present study, we analyzed gene expression of the MBNL family of regulators of alternative splicing in various stages of colorectal cancer development, together with the MBNL-target splicing events in FOXP1 and EPB41L3 genes and tumor-related CD44 variants. MATERIALS AND METHODS: Samples of tumor tissue and non-malignant mucosa from 108 patients were collected. After RNA isolation and reverse transcription, the relative gene expression of a selected gene panel was tested by quantitative real-time PCR, followed by statistical analysis. RESULTS: MBNL expression was decreased in tumor tissue compared to non-tumor mucosa. In addition, lower expression was observed for the variants of FOXP1 and EPB41L3, while higher expression in tumor tissue was detected both for total CD44 and its cancer-related variants 3 and 6. Transcript levels of the MBNL genes were not found to be related to any of the studied clinicopathological characteristics. Multiple significant associations were identified in the target gene panel, including higher transcript levels of FOXP1 and CD44v3 in patients with distant metastases and connections between recurrence-free survival and altered levels of FOXP1 and CD44v3. CONCLUSION: Our results identified for the first-time deregulation of MBNL genes in colorectal cancer. Down-regulation of their transcripts in tumor tissue compared to matched non-tumor mucosa can lead to transition of alternative splicing patterns towards a less differentiated phenotype, which highlights the importance of alternative splicing regulation for tumor growth and propagation.
- MeSH
- alternativní sestřih MeSH
- buněčná diferenciace fyziologie MeSH
- dospělí MeSH
- kolorektální nádory genetika metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- proteiny vázající RNA biosyntéza genetika MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5'ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5'ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.
IX, 228 s. : obr., tab., grafy ; 26 cm
In the inbred SHR/OlaIpcv rat colony, we identified males with small testicles and inability to reproduce. By selectively breeding their parents, we revealed the infertility to segregate as an autosomal recessive Mendelian character. No other phenotype was observed in males, and females were completely normal. By linkage using a backcross with Brown Norway strain, we mapped the locus to a 1.2Mbp segment on chromosome 7, harboring 35 genes. Sequencing of candidate genes revealed a G to A substitution in a canonical 'AG' splice site of intron 37 in Sbf1 (SET binding factor 1, alias myotubularin-related protein 5). This leads to either skipping exon 38 or shifting splicing one base downstream, invariantly resulting in frameshift, premature stop codon and truncation of the protein. Western blotting using two anti-Sbf1 antibodies revealed absence of the full-length protein in the mutant testis. Testicles of the mutant males were significantly smaller compared with SHR from 4weeks, peaked at 84% wild-type weight at 6weeks and declined afterward to 28%, reflecting massive germ cell loss. Histological examination revealed lower germ cell number; latest observed germ cell stage were round spermatids, resulting in the absence of sperm in the epididymis (azoospermia). SBF1 is a member of a phosphatase family lacking the catalytical activity. It probably modulates the activity of a phosphoinositol phosphatase MTMR2. Human homozygotes or compound heterozygotes for missense SBF1 mutations exhibit Charcot-Marie-Tooth disease (manifested mainly as progressive neuropathy), while a single mouse knockout reported in the literature identified male infertility as the only phenotype manifestation.
- MeSH
- alternativní sestřih genetika MeSH
- intracelulární signální peptidy a proteiny genetika MeSH
- krysa rodu rattus MeSH
- mutace genetika MeSH
- mužská infertilita etiologie metabolismus patologie MeSH
- potkani inbrední SHR MeSH
- regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite the wide application of nanomaterials, toxicity studies of nanoparticles (NP) are often limited to in vitro cell models, and the biological impact of NP exposure in mammals has not been thoroughly investigated. Zinc oxide (ZnO) NPs are commonly used in various consumer products. To evaluate the effects of the inhalation of ZnO NP in mice, we studied splice junction expression in the lungs as a proxy to gene expression changes analysis. Female ICR mice were treated with 6.46 × 104 and 1.93 × 106 NP/cm3 for 3 days and 3 months, respectively. An analysis of differential expression and alternative splicing events in 298 targets (splice junctions) of 68 genes involved in the processes relevant to the biological effects of ZnO NP was conducted using next-generation sequencing. Three days of exposure resulted in the upregulation of IL-6 and downregulation of BID, GSR, NF-kB2, PTGS2, SLC11A2, and TXNRD1 splice junction expression; 3 months of exposure increased the expression of splice junctions in ALDH3A1, APAF1, BID, CASP3, DHCR7, GCLC, GCLM, GSR, GSS, EHHADH, FAS, HMOX-1, IFNγ, NF-kB1, NQO-1, PTGS1, PTGS2, RAD51, RIPK2, SRXN1, TRAF6, and TXNRD1. Alternative splicing of TRAF6 and TXNRD1 was induced after 3 days of exposure to 1.93 × 106 NP/cm3. In summary, we observed changes of splice junction expression in genes involved in oxidative stress, apoptosis, immune response, inflammation, and DNA repair, as well as the induction of alternative splicing in genes associated with oxidative stress and inflammation. Our data indicate the potential negative biological effects of ZnO NP inhalation.
- MeSH
- alternativní sestřih účinky léků MeSH
- aplikace inhalační MeSH
- apoptóza účinky léků MeSH
- buněčná imunita účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- exprese genu účinky léků MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nanočástice toxicita MeSH
- oprava DNA účinky léků MeSH
- oxid zinečnatý toxicita MeSH
- oxidační stres účinky léků MeSH
- plíce metabolismus patologie MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.
- MeSH
- exony * MeSH
- HeLa buňky MeSH
- lidé MeSH
- místa sestřihu RNA * MeSH
- RNA malá jaderná * metabolismus genetika MeSH
- sekvence nukleotidů MeSH
- sestřih RNA MeSH
- transkripční faktor STAT3 * metabolismus genetika MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this review I focus on the role of splicing in long non-coding RNA (lncRNA) life. First, I summarize differences between the splicing efficiency of protein-coding genes and lncRNAs and discuss why non-coding RNAs are spliced less efficiently. In the second half of the review, I speculate why splice sites are the most conserved sequences in lncRNAs and what additional roles could splicing play in lncRNA metabolism. I discuss the hypothesis that the splicing machinery can, besides its dominant role in intron removal and exon joining, protect cells from undesired transcripts.
- MeSH
- RNA dlouhá nekódující * genetika MeSH
- sestřih RNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5' and 3' splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.