Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data

M. Převorovský, M. Hálová, K. Abrhámová, J. Libus, P. Folk,

. 2016 ; 2016 (-) : 4783841. [pub] 20161206

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17013319

Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5' and 3' splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17013319
003      
CZ-PrNML
005      
20170418103327.0
007      
ta
008      
170413s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2016/4783841 $2 doi
035    __
$a (PubMed)28050562
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Převorovský, Martin $u Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague 2, Czech Republic.
245    10
$a Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data / $c M. Převorovský, M. Hálová, K. Abrhámová, J. Libus, P. Folk,
520    9_
$a Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5' and 3' splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions.
650    _2
$a databáze nukleových kyselin $7 D030561
650    _2
$a mutace $x genetika $7 D009154
650    _2
$a prekurzory RNA $x genetika $7 D012322
650    _2
$a sestřih RNA $x genetika $7 D012326
650    _2
$a Saccharomyces cerevisiae $x genetika $7 D012441
650    _2
$a sekvenční analýza RNA $x metody $7 D017423
650    _2
$a spliceozomy $x genetika $7 D017381
650    12
$a průběh práce $7 D057188
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hálová, Martina $u Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague 2, Czech Republic.
700    1_
$a Abrhámová, Kateřina $u Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague 2, Czech Republic. $7 gn_A_00000825
700    1_
$a Libus, Jiří $u Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague 2, Czech Republic.
700    1_
$a Folk, Petr $u Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 43 Prague 2, Czech Republic.
773    0_
$w MED00182164 $t BioMed research international $x 2314-6141 $g Roč. 2016, č. - (2016), s. 4783841
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28050562 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170413 $b ABA008
991    __
$a 20170418103635 $b ABA008
999    __
$a ok $b bmc $g 1199784 $s 974097
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 2016 $c - $d 4783841 $e 20161206 $i 2314-6141 $m BioMed research international $n Biomed Res Int $x MED00182164
LZP    __
$a Pubmed-20170413

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...