Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MR/L010909/1
Medical Research Council - United Kingdom
MR/R024847/1
Medical Research Council - United Kingdom
PubMed
27789653
PubMed Central
PMC5985589
DOI
10.1177/0962280216674496
PII: 0962280216674496
Knihovny.cz E-zdroje
- Klíčová slova
- Discriminant analysis, mixture distributions, multivariate generalized linear mixed model, multivariate longitudinal data, random effects,
- MeSH
- algoritmy MeSH
- biologické markery * MeSH
- diskriminační analýza * MeSH
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- předškolní dítě MeSH
- progrese nemoci * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery * MeSH
There is an emerging need in clinical research to accurately predict patients' disease status and disease progression by optimally integrating multivariate clinical information. Clinical data are often collected over time for multiple biomarkers of different types (e.g. continuous, binary and counts). In this paper, we present a flexible and dynamic (time-dependent) discriminant analysis approach in which multiple biomarkers of various types are jointly modelled for classification purposes by the multivariate generalized linear mixed model. We propose a mixture of normal distributions for the random effects to allow additional flexibility when modelling the complex correlation between longitudinal biomarkers and to robustify the model and the classification procedure against misspecification of the random effects distribution. These longitudinal models are subsequently used in a multivariate time-dependent discriminant scheme to predict, at any time point, the probability of belonging to a particular risk group. The methodology is illustrated using clinical data from patients with epilepsy, where the aim is to identify patients who will not achieve remission of seizures within a five-year follow-up period.
Department of Biostatistics University of Liverpool UK
Department of Eye and Vision Science University of Liverpool UK
Zobrazit více v PubMed
Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet 2007; 369: 1016–1026. PubMed PMC
Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet 2007; 369: 1000–1015. PubMed PMC
Bonnett L, Smith CT, Smith D, et al. Prognostic factors for time to treatment failure and time to 12 months of remission for patients with focal epilepsy: post-hoc, subgroup analyses of data from the SANAD trial. Lancet Neurol 2012; 11: 331–340. PubMed
Bonnett LJ, Smith CT, Smith D, et al. Time to 12-month remission and treatment failure for generalised and unclassified epilepsy. J Neurol Neurosurg Psychiatry 2014; 85: 603–610. PubMed PMC
van Houwelingen H, Putter H. Dynamic prediction in clinical survival analysis, Boca Raton, FL: CRC Press, 2011.
Rizopoulos D. Joint models for longitudinal and time-to-event data: with applications in R, Boca Raton, FL: CRC Press, 2012.
Proust-Lima C, Taylor JMG. Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach. Biostatistics 2009; 10: 535–549. PubMed PMC
Proust-Lima C, Séne M, Taylor JM, et al. Joint latent class models for longitudinal and time-to-event data: a review. Stat Meth Med Res 2014; 23: 74–90. PubMed PMC
Proust-Lima C, Dartigues JF, Jacqmin-Gadda H. Joint modelling of repeated multivariate cognitive measures and competing risks of dementia and death: a latent process and latent class approach. arXiv preprint arXiv. 14097598 2014. PubMed
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction, 2nd ed New York: Springer-Verlag, 2009.
Tomasko L, Helms RW, Snapinn SM. A discriminant analysis extension to mixed models. Stat Med 1999; 18: 1249–1260. PubMed
Brant LJ, Sheng SL, Morrell CH, et al. Screening for prostate cancer by using random-effects models. J Roy Stat Soc Ser A 2003; 166: 51–62.
Wernecke KD, Kalb G, Schink T, et al. A mixed model approach to discriminant analysis with longitudinal data. Biometrical J 2004; 46: 246–254.
Lix LM, Sajobi TT. Discriminant analysis for repeated measures data: a review. Front Psychol 2010; 1: 1–9. PubMed PMC
Kohlmann M, Held L, Grunert VP. Classification of therapy resistance based on longitudinal biomarker profiles. Biometric J 2009; 51: 610–626. PubMed
Roy A, Khattree R. Discrimination and classification with repeated measures data under different covariance structures. Commun Stat Simul 2005; 34: 167–178.
Roy A, Khattree R. On discrimination and classification with multivariate repeated measures data. J Stat Plan Inference 2005; 134: 462–485.
Kim Y, Kong L. Classification using longitudinal trajectory of biomarker in the presence of detection limits. Stat Meth Med Res 2016; 25: 458–471. PubMed
Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963–974. PubMed
Marshall G, De la Cruz-Mesía R, Quintana FA, et al. Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data. Biometrics 2009; 65: 69–80. PubMed
Komárek A, Hansen BE, Kuiper EMM, et al. Discriminant analysis using a multivariate linear mixed model with a normal mixture in the random effects distribution. Stat Med 2010; 29: 3267–3283. PubMed
Morrell CH, Brant LJ, Sheng S, et al. Screening for prostate cancer using multivariate mixed-effects models. Appl Stat 2012; 39: 1151–1175. PubMed PMC
Fieuws S, Verbeke G, Maes B, et al. Predicting renal graft failure using multivariate longitudinal profiles. Biostatistics 2008; 9: 419–431. PubMed
Verbeke G, Lesaffre E. A linear mixed-effects model with heterogeneity in the random-effects population. J Am Stat Assoc 1996; 91: 217–221.
Litière S, Alonso A, Molenberghs G. The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models. Stat Med 2008; 27: 3125–3144. PubMed
Muthén B, Asparouhov T. Growth mixture modeling: analysis with non-Gaussian random effects. In: Fitzmaurice G, Davidian M, Verbeke G, et al.(eds). Longitudinal data analysis: handbooks of modern statistical methods, Boca Raton, FL: Chapman & Hall/CRC, 2009, pp. 143–165.
McLachlan GJ, Peel D. Finite mixture models, New York: John Wiley & Sons, 2000.
Böhning D, Seidel W, Alfó M, et al. Editorial: advances in mixture models. Comput Stat Data Analysis 2007; 51: 5205–5210.
Komárek A, Komárková L. Clustering for multivariate continuous and discrete longitudinal data. Ann Appl Stat 2013; 7: 177–200.
Komárek A, Komárková L. Capabilities of R package mixAK for clustering based on multivariate continuous and discrete longitudinal data. J Stat Softw 2014; 59: 1–38. PubMed
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2016, http://www.R-project.org/.
Morrell CH, Brant LJ and Sheng S. Comparing approaches for predicting prostate cancer from longitudinal data. In: 2007 Proceedings of the American statistical association (Biometrics Section), pp.127–133. Alexandria: American Statistical Association.
Morrell CH, Sheng SL, Brant LJ. A comparative study of approaches for predicting prostate cancer from longitudinal data. Commun Stat Simul 2011; 40: 1494–1513.
Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. J Am stat Assoc 1987; 82: 528–540.
Plummer M. Penalized loss functions for Bayesian model comparison. Biostatistics 2008; 9: 523–539. PubMed
Heagerty PJ, Zheng Y. Survival model predictive accuracy and roc curves. Biometrics 2005; 61: 92–105. PubMed
Teixeira L, Cadarso-Surez C, Rodrigues A, et al. Time-dependent ROC methodology to evaluate the predictive accuracy of semiparametric multi-state models in the presence of competing risks: an application to peritoneal dialysis programme. Stat Model 2016; 16: 409–428.
Peyhardi J, Trottier C, Gudon Y. Partitioned conditional generalized linear models for categorical responses. Stat Model 2016; 16: 297–321.
Colombi R, Giordano S. A class of mixture models for multidimensional ordinal data. Stat Model 2016; 16: 322–340.
Identification of patients who will not achieve seizure remission within 5 years on AEDs
Dynamic classification using credible intervals in longitudinal discriminant analysis