Catalytic mechanism of the maloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12952988
DOI
10.1074/jbc.m307056200
PII: S0021-9258(20)82260-1
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- chemické modely MeSH
- chlorované uhlovodíky chemie MeSH
- cyklohexany chemie MeSH
- halogeny chemie MeSH
- hexany chemie MeSH
- hydrolasy chemie metabolismus fyziologie MeSH
- hydrolýza MeSH
- katalýza MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- konformace proteinů MeSH
- ligandy MeSH
- molekulární modely MeSH
- Sphingomonas enzymologie MeSH
- teplota MeSH
- uhlík chemie MeSH
- vazba proteinů MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-chlorohexane MeSH Prohlížeč
- chlorované uhlovodíky MeSH
- cyklohexany MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- halogeny MeSH
- hexany MeSH
- hydrolasy MeSH
- ligandy MeSH
- uhlík MeSH
Haloalkane dehalogenases are bacterial enzymes capable of carbon-halogen bond cleavage in halogenated compounds. To obtain insights into the mechanism of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), we studied the steady-state and presteady-state kinetics of the conversion of the substrates 1-chlorohexane, chlorocyclohexane, and bromocyclohexane. The results lead to a proposal of a minimal kinetic mechanism consisting of three main steps: (i) substrate binding, (ii) cleavage of the carbon-halogen bond with simultaneous formation of an alkyl-enzyme intermediate, and (iii) hydrolysis of the alkyl-enzyme intermediate. Release of both products, halide and alcohol, is a fast process that was not included in the reaction mechanism as a distinct step. Comparison of the kinetic mechanism of LinB with that of haloalkane dehalogenase DhlA from Xantobacter autotrophicus GJ10 and the haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 shows that the overall mechanisms are similar. The main difference is in the rate-limiting step, which is hydrolysis of the alkylenzyme intermediate in LinB, halide release in DhlA, and liberation of an alcohol in DhaA. The occurrence of different rate-limiting steps for three enzymes that belong to the same protein family indicates that extrapolation of this important catalytic property from one enzyme to another can be misleading even for evolutionary closely related proteins. The differences in the rate-limiting step were related to: (i) number and size of the entrance tunnels, (ii) protein flexibility, and (iii) composition of the halide-stabilizing active site residues based on comparison of protein structures.
Citace poskytuje Crossref.org
Structural Analysis of the Ancestral Haloalkane Dehalogenase AncLinB-DmbA
Discovery of Novel Haloalkane Dehalogenase Inhibitors
Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate
Amperometric Sensor for Detection of Chloride Ions