Targeting prostate cancer by new bispecific monocyte engager directed to prostate-specific membrane antigen

. 2025 ; 20 (3) : e0307353. [epub] 20250317

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40096254

Prostate cancer (PCa) ranks as the second leading cause of cancer-related deaths among men in the United States. Prostate-specific membrane antigen (PSMA) represents a well-established biomarker of PCa, and its levels correlate positively with the disease progression, culminating at the stage of metastatic castration-resistant prostate cancer. Due to its tissue-specific expression and cell surface localization, PSMA shows superior potential for precise imaging and therapy of PCa. Antibody-based immunotherapy targeting PSMA offers the promise of selectively engaging the host immune system with minimal off-target effects. Here we report on the design, expression, purification, and characterization of a bispecific engager, termed 5D3-CP33, that efficiently recruits macrophages to the vicinity of PSMA-positive cancer cells mediating PCa death. The engager was engineered by fusing the anti-PSMA 5D3 antibody fragment to a cyclic peptide 33 (CP33), selectively binding the Fc gamma receptor I (FcγRI/CD64) on the surface of phagocytes. Functional parts of the 5D3-CP33 engager revealed a nanomolar affinity for PSMA and FcγRI/CD64 with dissociation constants of KD = 3 nM and KD = 140 nM, respectively. At a concentration as low as 0.3 nM, the engager was found to trigger the production of reactive oxygen species by U937 monocytic cells in the presence of PSMA-positive cells. Moreover, flow cytometry analysis demonstrated antibody-dependent cell-mediated phagocytosis of PSMA-positive cancer cells by U937 monocytes when exposed to 0.15 nM 5D3-CP33. Our findings illustrate that 5D3-CP33 effectively and specifically activates monocytes upon PSMA-positive target engagement, resulting in the elimination of tumor cells. The 5D3-CP33 engager can thus serve as a promising lead for developing new immunotherapy tools for the efficient treatment of PCa.

Zobrazit více v PubMed

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. PubMed

Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Ber AP, Petrov SA, et al.. PSMA-targeted small-molecule docetaxel conjugate: Synthesis and preclinical evaluation. Eur J Med Chem. 2022;227:113936. doi: 10.1016/j.ejmech.2021.113936 PubMed DOI

Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart H, Hadaschik B, et al.. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40(4):486–95. PubMed

Schmidkonz C, Hollweg C, Beck M, Reinfelder J, Goetz TI, Sanders JC, et al.. 99m Tc-MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer. Prostate. 2018;78(1):54–63. doi: 10.1002/pros.23444 PubMed DOI

Liolios C, Koutsikou T, Salvanou E, Kapiris F, Machairas E, Stampolaki M. Synthesis and in vitro proof-of-concept studies on bispecific iron oxide magnetic nanoparticles targeting PSMA and GRP receptors for PET/MR imaging of prostate cancer. Int J Pharm. 2022;624:122008. PubMed

Zhang X, Qi S, Liu D, Du J, Jin J. PSMA-Targeted Supramolecular Nanoparticles Prepared From Cucurbit[8]uril-Based Ternary Host-Guest Recognition for Prostate Cancer Therapy. Front Chem. 2022;10:847523. doi: 10.3389/fchem.2022.847523 PubMed DOI PMC

Barinka C, Rinnová M, Sácha P, Rojas C, Majer P, Slusher BS, et al.. Substrate specificity, inhibition and enzymological analysis of recombinant human glutamate carboxypeptidase II. J Neurochem. 2002;80(3):477–87. doi: 10.1046/j.0022-3042.2001.00715.x PubMed DOI

Berger UV, Carter RE, McKee M, Coyle JT. N-acetylated alpha-linked acidic dipeptidase is expressed by non-myelinating Schwann cells in the peripheral nervous system. J Neurocytol. 1995;24(2):99–109. doi: 10.1007/BF01181553 PubMed DOI

Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59(13):3192–8. PubMed

Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM Jr, Wang CY, et al.. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg. 2006;30(4):628–36. doi: 10.1007/s00268-005-0544-5 PubMed DOI

Sokoloff RL, Norton KC, Gasior CL, Marker KM, Grauer LS. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: Levels in tissues, seminal fluid and urine. The Prostate. 2000;43(2):150–7. PubMed

Bařinka C, Rojas C, Slusher B, Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem. 2012;19(6):856–70. doi: 10.2174/092986712799034888 PubMed DOI PMC

Barinka C, Starkova J, Konvalinka J, Lubkowski J. A high-resolution structure of ligand-free human glutamate carboxypeptidase II. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63(Pt 3):150–3. doi: 10.1107/S174430910700379X PubMed DOI PMC

Meller B, Bremmer F, Sahlmann CO, Hijazi S, Bouter C, Trojan L, et al.. Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. EJNMMI Res. 2015;5(1):66. PubMed PMC

Novakova Z, Cerny J, Choy CJ, Nedrow JR, Choi JK, Lubkowski J, et al.. Design of composite inhibitors targeting glutamate carboxypeptidase II: the importance of effector functionalities. FEBS J. 2016;283(1):130–43. doi: 10.1111/febs.13557 PubMed DOI PMC

Ganguly T, Dannoon S, Hopkins M, Murphy S, Cahaya H, Blecha J. A high-affinity [(18)F]-labeled phosphoramidate peptidomimetic PSMA-targeted inhibitor for PET imaging of prostate cancer. Nuclear Medicine and Biology. 2015;42(10):780–7. PubMed PMC

Barinka C, Hlouchova K, Rovenska M, Majer P, Dauter M, Hin N, et al.. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. J Mol Biol. 2008;376(5):1438–50. doi: 10.1016/j.jmb.2007.12.066 PubMed DOI PMC

Farolfi A, Calderoni L, Mattana F, Mei R, Telo S, Fanti S, et al.. Current and Emerging Clinical Applications of PSMA PET Diagnostic Imaging for Prostate Cancer. J Nucl Med. 2021;62(5):596–604. doi: 10.2967/jnumed.120.257238 PubMed DOI

Afshar-Oromieh A, Babich J, Kratochwil C, Giesel F, Eisenhut M, Kopka K, et al.. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. Journal of Nuclear Medicine. 2016;57(Suppl 3):79S-89S. PubMed

Fay EK, Graff JN. Immunotherapy in Prostate Cancer. Cancers (Basel). 2020;12(7):1752. doi: 10.3390/cancers12071752 PubMed DOI PMC

Sundar R, Cho B-C, Brahmer JR, Soo RA. Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol. 2015;7(2):85–96. doi: 10.1177/1758834014567470 PubMed DOI PMC

Jen EY, Xu Q, Schetter A, Przepiorka D, Shen YL, Roscoe D, et al.. FDA Approval: Blinatumomab for Patients with B-cell Precursor Acute Lymphoblastic Leukemia in Morphologic Remission with Minimal Residual Disease. Clin Cancer Res. 2019;25(2):473–7. doi: 10.1158/1078-0432.CCR-18-2337 PubMed DOI

Pai-Scherf L, Blumenthal GM, Li H, Subramaniam S, Mishra-Kalyani PS, He K, et al.. FDA approval summary: Pembrolizumab for treatment of metastatic non-small cell lung cancer: First-line therapy and beyond. Oncologist. 2017;22(11):1392–9. PubMed PMC

King A. Could immunotherapy finally break through in prostate cancer?. Nature. 2022;609(7927):S42–4. doi: 10.1038/d41586-022-02861-y PubMed DOI

Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al.. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22. doi: 10.1056/NEJMoa1001294 PubMed DOI

Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, et al.. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105. doi: 10.1200/JCO.2009.25.0597 PubMed DOI PMC

Gulley JL, Arlen PM, Tsang K-Y, Yokokawa J, Palena C, Poole DJ, et al.. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res. 2008;14(10):3060–9. doi: 10.1158/1078-0432.CCR-08-0126 PubMed DOI PMC

Lubaroff DM, Konety BR, Link B, Gerstbrein J, Madsen T, Shannon M, et al.. Phase I clinical trial of an adenovirus/prostate-specific antigen vaccine for prostate cancer: safety and immunologic results. Clin Cancer Res. 2009;15(23):7375–80. doi: 10.1158/1078-0432.CCR-09-1910 PubMed DOI PMC

Handa S, Hans B, Goel S, Bashorun HO, Dovey Z, Tewari A. Immunotherapy in prostate cancer: current state and future perspectives. Ther Adv Urol. 2020;12:1756287220951404. doi: 10.1177/1756287220951404 PubMed DOI PMC

Kwon E, Drake C, Scher H, Fizazi K, Bossi A, van den Eertwegh A, et al.. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncology. 2014;15(7):700–12. PubMed PMC

Small EJ, Tchekmedyian NS, Rini BI, Fong L, Lowy I, Allison JP. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res. 2007;13(6):1810–5. doi: 10.1158/1078-0432.CCR-06-2318 PubMed DOI

Hlouchova K, Barinka C, Konvalinka J, Lubkowski J. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J. 2009;276(16):4448–62. doi: 10.1111/j.1742-4658.2009.07152.x PubMed DOI

Zhang W, Ran S, Sambade M, Huang X, Thorpe P. A monoclonal antibody that blocks VEGF binding to VEGFR2 (KDR/Flk-1) inhibits vascular expression of Flk-1 and tumor growth in an orthotopic human breast cancer model. Angiogenesis. 2002;5(1):35–44. PubMed

Gao Y. Complement system in Anti-CD20 mAb therapy for cancer: A mini-review. Int J Immunopathol Pharmacol. 2023;37:3946320231181464. doi: 10.1177/03946320231181464 PubMed DOI PMC

Petricevic B, Laengle J, Singer J, Sachet M, Fazekas J, Steger G, et al.. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients. J Transl Med. 2013;11:307. doi: 10.1186/1479-5876-11-307 PubMed DOI PMC

Shrestha P, Astter Y, Davis DA, Zhou T, Yuan CM, Ramaswami R, et al.. Daratumumab induces cell-mediated cytotoxicity of primary effusion lymphoma and is active against refractory disease. Oncoimmunology. 2023;12(1):2163784. doi: 10.1080/2162402X.2022.2163784 PubMed DOI PMC

Van Wagoner C, Rivera-Escalera F, Jaimes-Delgadillo N, Chu C, Zent C, Elliott M. Antibody-mediated phagocytosis in cancer immunotherapy. Immunological Reviews. 2023;319(1):128–41. PubMed PMC

Ma X, Wong SW, Zhou P, Chaulagain CP, Doshi P, Klein AK, et al.. Daratumumab binds to mobilized CD34+ cells of myeloma patients in vitro without cytotoxicity or impaired progenitor cell growth. Exp Hematol Oncol. 2018;727. doi: 10.1186/s40164-018-0119-4 PubMed DOI PMC

Naicker SD, Feerick CL, Lynch K, Swan D, McEllistrim C, Henderson R, et al.. Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis. Oncoimmunology. 2021;10(1):1859263. doi: 10.1080/2162402X.2020.1859263 PubMed DOI PMC

Sanchez L, Wang Y, Siegel DS, Wang ML. Daratumumab: a first-in-class CD38 monoclonal antibody for the treatment of multiple myeloma. J Hematol Oncol. 2016;9(1):51. doi: 10.1186/s13045-016-0283-0 PubMed DOI PMC

Shi Y, Fan X, Deng H, Brezski RJ, Rycyzyn M, Jordan RE, et al.. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcγ receptors on macrophages. J Immunol. 2015;194(9):4379–86. doi: 10.4049/jimmunol.1402891 PubMed DOI

van de Donk N, Usmani SZ. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front Immunol. 2018;9:2134. PubMed PMC

Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel). 2020;9(3):34. doi: 10.3390/antib9030034 PubMed DOI PMC

Cha H-R, Lee JH, Ponnazhagan S. Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Res. 2020;80(8):1615–23. doi: 10.1158/0008-5472.CAN-19-2948 PubMed DOI PMC

Zuccolotto G, Penna A, Fracasso G, Carpanese D, Montagner IM, Dalla Santa S, et al.. PSMA-Specific CAR-Engineered T Cells for Prostate Cancer: CD28 Outperforms Combined CD28-4-1BB “Super-Stimulation”. Front Oncol. 2021;11:708073. doi: 10.3389/fonc.2021.708073 PubMed DOI PMC

Brischwein K, Schlereth B, Guller B, Steiger C, Wolf A, Lutterbuese R, et al.. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol Immunol. 2006;43(8):1129–43. doi: 10.1016/j.molimm.2005.07.034 PubMed DOI

Hummel H-D, Kufer P, Grüllich C, Seggewiss-Bernhardt R, Deschler-Baier B, Chatterjee M, et al.. Pasotuxizumab, a BiTE® immune therapy for castration-resistant prostate cancer: Phase I, dose-escalation study findings. Immunotherapy. 2021;13(2):125–41. doi: 10.2217/imt-2020-0256 PubMed DOI

Minn I, Huss DJ, Ahn H-H, Chinn TM, Park A, Jones J, et al.. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci Adv. 2019;5(7):eaaw5096. doi: 10.1126/sciadv.aaw5096 PubMed DOI PMC

Das G, Ptacek J, Havlinova B, Nedvedova J, Barinka C, Novakova Z. Targeting Prostate Cancer Using Bispecific T-Cell Engagers against Prostate-Specific Membrane Antigen. ACS Pharmacol Transl Sci. 2023;6(11):1703–14. doi: 10.1021/acsptsci.3c00159 PubMed DOI PMC

Novakova Z, Belousova N, Foss CA, Havlinova B, Gresova M, Das G, et al.. Engineered Fragments of the PSMA-Specific 5D3 Antibody and Their Functional Characterization. Int J Mol Sci. 2020;21(18):6672. doi: 10.3390/ijms21186672 PubMed DOI PMC

Bonetto S, Spadola L, Buchanan AG, Jermutus L, Lund J. Identification of cyclic peptides able to mimic the functional epitope of IgG1-Fc for human Fc gammaRI. FASEB J. 2009;23(2):575–85. doi: 10.1096/fj.08-117069 PubMed DOI PMC

Ito T, Tsumoto K. Effects of subclass change on the structural stability of chimeric, humanized, and human antibodies under thermal stress. Protein Sci. 2013;22(11):1542–51. doi: 10.1002/pro.2340 PubMed DOI PMC

Bracher M, Gould HJ, Sutton BJ, Dombrowicz D, Karagiannis SN. Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J Immunol Methods. 2007;323(2):160–71. doi: 10.1016/j.jim.2007.04.009 PubMed DOI

Lake B, Rullo A. Offsetting low-affinity carbohydrate binding with covalency to engage sugar-specific proteins for tumor-immune proximity induction. ACS Central Science. 2023;9(11):2064–75. PubMed PMC

Akinrinmade OA, Chetty S, Daramola AK, Islam M-U, Thepen T, Barth S. CD64: An Attractive Immunotherapeutic Target for M1-type Macrophage Mediated Chronic Inflammatory Diseases. Biomedicines. 2017;5(3):56. doi: 10.3390/biomedicines5030056 PubMed DOI PMC

Boinapally S, Ahn H-H, Cheng B, Brummet M, Nam H, Gabrielson KL, et al.. A prostate-specific membrane antigen (PSMA)-targeted prodrug with a favorable in vivo toxicity profile. Sci Rep. 2021;11(1):7114. doi: 10.1038/s41598-021-86551-1 PubMed DOI PMC

Boutilier AJ, Elsawa SF. Macrophage Polarization States in the Tumor Microenvironment. Int J Mol Sci. 2021;22(13):6995. doi: 10.3390/ijms22136995 PubMed DOI PMC

Nam H-W, Bae J, Kim Y-W, An H-H, Kim S-H, Kim K-Y, et al.. Anti-Cancer Effects of RAW 264.7 Cells on Prostate Cancer PC-3 Cells. Ann Clin Lab Sci. 2020;50(6):739–46. PubMed

Noonepalle SKR, Gracia-Hernandez M, Aghdam N, Berrigan M, Coulibaly H, Li X, et al.. Cell therapy using ex vivo reprogrammed macrophages enhances antitumor immune responses in melanoma. J Exp Clin Cancer Res. 2024;43(1):263. doi: 10.1186/s13046-024-03182-w PubMed DOI PMC

Weiskopf K, Weissman I. Macrophages are critical effectors of antibody therapies for cancer. MAbs. 2015;7(2):303–10. PubMed PMC

Poh AR, Ernst M. Targeting Macrophages in Cancer: From Bench to Bedside. Front Oncol. 2018;849. doi: 10.3389/fonc.2018.00049 PubMed DOI PMC

Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B. 2020;10(11):2156–70. doi: 10.1016/j.apsb.2020.04.004 PubMed DOI PMC

Petty AJ, Yang Y. Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy. 2017;9(3):289–302. doi: 10.2217/imt-2016-0135 PubMed DOI PMC

DeNardo D, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews Immunology. 2019;19(6):369–82. PubMed PMC

Dallavalasa S, Beeraka NM, Basavaraju CG, Tulimilli SV, Sadhu SP, Rajesh K, et al.. The Role of Tumor Associated Macrophages (TAMs) in Cancer Progression, Chemoresistance, Angiogenesis and Metastasis - Current Status. Curr Med Chem. 2021;28(39):8203–36. doi: 10.2174/0929867328666210720143721 PubMed DOI

He Z, Zhang S. Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Frontiers in Immunology. 2021;12:741305. PubMed PMC

Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol. 2023;23(2):106–20. doi: 10.1038/s41577-022-00737-w PubMed DOI

Mancardi DA, Albanesi M, Jönsson F, Iannascoli B, Van Rooijen N, Kang X, et al.. The high-affinity human IgG receptor FcγRI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy. Blood. 2013;121(9):1563–73. doi: 10.1182/blood-2012-07-442541 PubMed DOI

Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, et al.. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 2018;67(6):1112–23. doi: 10.1136/gutjnl-2017-313738 PubMed DOI PMC

Singh S, Barik D, Arukha AP, Prasad S, Mohapatra I, Singh A, et al.. Small Molecule Targeting Immune Cells: A Novel Approach for Cancer Treatment. Biomedicines. 2023;11(10):2621. doi: 10.3390/biomedicines11102621 PubMed DOI PMC

Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al.. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73(3):1128–41. doi: 10.1158/0008-5472.CAN-12-2731 PubMed DOI PMC

Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang Y, et al.. CAR-macrophage: A new immunotherapy candidate against solid tumors. Biomed Pharmacother. 2021;139:111605. doi: 10.1016/j.biopha.2021.111605 PubMed DOI

Zhang W, Liu L, Su H, Liu Q, Shen J, Dai H, et al.. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br J Cancer. 2019;121(10):837–45. doi: 10.1038/s41416-019-0578-3 PubMed DOI PMC

Chen C, Jing W, Chen Y, Wang G, Abdalla M, Gao L, et al.. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci Transl Med. 2022;14(656):eabn1128. doi: 10.1126/scitranslmed.abn1128 PubMed DOI

Huo Y, Zhang H, Sa L, Zheng W, He Y, Lyu H, et al.. M1 polarization enhances the antitumor activity of chimeric antigen receptor macrophages in solid tumors. J Transl Med. 2023;21(1):225. doi: 10.1186/s12967-023-04061-2 PubMed DOI PMC

Hadiloo K, Taremi S, Heidari M, Esmaeilzadeh A. The CAR macrophage cells, a novel generation of chimeric antigen-based approach against solid tumors. Biomark Res. 2023;11(1):103. doi: 10.1186/s40364-023-00537-x PubMed DOI PMC

Lyadova I, Gerasimova T, Nenasheva T. Macrophages derived from human induced pluripotent stem cells: The diversity of protocols, future prospects, and outstanding questions. Frontiers in Cell and Developmental Biology. 2021;9:640703. PubMed PMC

Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al.. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947–53. doi: 10.1038/s41587-020-0462-y PubMed DOI PMC

Olazabal IM, Martín-Cofreces NB, Mittelbrunn M, Martínez del Hoyo G, Alarcón B, Sánchez-Madrid F. Activation outcomes induced in naïve CD8 T-cells by macrophages primed via “phagocytic” and nonphagocytic pathways. Mol Biol Cell. 2008;19(2):701–10. doi: 10.1091/mbc.e07-07-0650 PubMed DOI PMC

Pratt KP. Anti-drug antibodies: emerging approaches to predict, reduce or reverse biotherapeutic immunogenicity. Antibodies. 2018;7(2):19. PubMed PMC

Suh K, Kyei I, Hage DS. Approaches for the detection and analysis of antidrug antibodies to biopharmaceuticals: A review. J Sep Sci. 2022;45(12):2077–92. doi: 10.1002/jssc.202200112 PubMed DOI PMC

Yokota T, Milenic DE, Whitlow M, Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 1992;52(12):3402–8. PubMed

Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, et al.. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers (Basel). 2022;14(17):4206. doi: 10.3390/cancers14174206 PubMed DOI PMC

Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–33. doi: 10.1111/j.1476-5381.2009.00190.x PubMed DOI PMC

Saxena A, Wu D. Advances in Therapeutic Fc Engineering - Modulation of IgG-Associated Effector Functions and Serum Half-life. Front Immunol. 2016;7580. doi: 10.3389/fimmu.2016.00580 PubMed DOI PMC

Shen Y, Li H, Zhao L, Li G, Chen B, Guo Q, et al.. Increased half-life and enhanced potency of Fc-modified human PCSK9 monoclonal antibodies in primates. PLoS One. 2017;12(8):e0183326. doi: 10.1371/journal.pone.0183326 PubMed DOI PMC

Sondermann P, Szymkowski D. Harnessing Fc receptor biology in the design of therapeutic antibodies. Current Opinion in Immunology. 2016;4078–87. PubMed

Santos MLd, Quintilio W, Manieri TM, Tsuruta LR, Moro AM. Advances and challenges in therapeutic monoclonal antibodies drug development. Brazilian Journal of Pharmaceutical Sciences. 2018;54(spe):e01007.

Harper T, Sharma A, Kaliyaperumal S, Fajardo F, Hsu K, Liu L, et al.. Characterization of an Anti-CD70 Half-Life Extended Bispecific T-Cell Engager (HLE-BiTE) and Associated On-Target Toxicity in Cynomolgus Monkeys. Toxicol Sci. 2022;189(1):32–50. doi: 10.1093/toxsci/kfac052 PubMed DOI

Mandrup OA, Ong SC, Lykkemark S, Dinesen A, Rudnik-Jansen I, Dagnæs-Hansen NF, et al.. Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Commun Biol. 2021;4(1):310. doi: 10.1038/s42003-021-01790-2 PubMed DOI PMC

Schlapschy M, Binder U, Börger C, Theobald I, Wachinger K, Kisling S, et al.. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng Des Sel. 2013;26(8):489–501. doi: 10.1093/protein/gzt023 PubMed DOI PMC

Mester S, Evers M, Meyer S, Nilsen J, Greiff V, Sandlie I, et al.. Extended plasma half-life of albumin-binding domain fused human IgA upon pH-dependent albumin engagement of human FcRn in vitro and in vivo. MAbs. 2021;13(1):1893888. doi: 10.1080/19420862.2021.1893888 PubMed DOI PMC

McEnaney PJ, Fitzgerald KJ, Zhang AX, Douglass EF Jr, Shan W, Balog A, et al.. Chemically synthesized molecules with the targeting and effector functions of antibodies. J Am Chem Soc. 2014;136(52):18034–43. doi: 10.1021/ja509513c PubMed DOI PMC

Kopka K, Benesova M, Barinka C, Haberkorn U, Babich J. Glu-ureido-based inhibitors of prostate-specific membrane antigen: Lessons learned during the development of a novel class of low-molecular-weight theranostic radiotracers. J Nucl Med. 2017;58(Suppl 2):17S-26S. PubMed

García-García E, Rosales C. Fc receptor signaling in leukocytes: Role in host defense and immune regulation. Current Immunology Reviews. 2009;5(3):227–42.

Bakht MK, Hayward JJ, Shahbazi-Raz F, Skubal M, Tamura R, Stringer KF, et al.. Identification of alternative protein targets of glutamate-ureido-lysine associated with PSMA tracer uptake in prostate cancer cells. Proc Natl Acad Sci U S A. 2022;119(4):e2025710119. doi: 10.1073/pnas.2025710119 PubMed DOI PMC

Dodev TS, Karagiannis P, Gilbert AE, Josephs DH, Bowen H, James LK, et al.. A tool kit for rapid cloning and expression of recombinant antibodies. Sci Rep. 2014;4:5885. doi: 10.1038/srep05885 PubMed DOI PMC

Skultetyova L, Ustinova K, Kutil Z, Novakova Z, Pavlicek J, Mikesova J, et al.. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep. 2017;7(1):11547. doi: 10.1038/s41598-017-11739-3 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...