Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention

. 2020 Mar 07 ; 10 (3) : . [epub] 20200307

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32155996

Grantová podpora
VT2019-2021 UHK - International CEP - Centrální evidence projektů
L/ICA/ICB/201062/15 (2016-2018) Organisation for the Prohibition of Chemical Weapons-OPCW - International

This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.

Zobrazit více v PubMed

OPCW. [(accessed on 3 January 2020)]; Available online: www.opcw.org.

Organisation for the Prohibition of Chemical Weapons—OPCW. [(accessed on 3 January 2020)]; Available online: https://www.opcw.org/about-us/history.

Chemical Weapons Convention—CWC. [(accessed on 3 January 2020)]; Available online: https://www.opcw.org/chemical-weapons-convention.

Cavalcante S.F.A., Simas A.B.C., Kuča K. Nerve Agents’ Surrogates: Invaluable Tools for Development of Acetylcholinesterase Reactivators. Curr. Org. Chem. 2019;23:1539–1559. doi: 10.2174/1385272823666190806114017. DOI

Darling R.G., Noste R.E. In: Ciottone’s Disaster Medicine. Ciottone G.R., editor. Elsevier Science; Amsterdam, The Netherlands: 2016. pp. 489–498.

Nepovimova E., Kuča K. The history of poisoning: From ancient times until modern era. Arch. Toxicol. 2019;93:11–24. doi: 10.1007/s00204-018-2290-0. PubMed DOI

Vale A., Marrs T.C., Rice P. Chemical terrorism and nerve agents. Medicine. 2016;44:106–108. doi: 10.1016/j.mpmed.2015.11.004. DOI

Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus Compounds as Chemical Warfare Agents: A Review. J. Braz. Chem. Soc. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI

Greenfield R.A., Brown B.R., Hutchins J.B., Iandolo J.J., Jackson R., Slater L.N., Bronze M.S. Microbiological, biological, and chemical weapons of warfare and terrorism. Am. J. Med. Sci. 2002;323:326–340. doi: 10.1097/00000441-200206000-00005. PubMed DOI

Epstein J. Weapons of Mass Destruction: Is is all about Chemistry. J. Chem. Ed. 2009;86:1377–1381. doi: 10.1021/ed086p1377. DOI

Constanzi S., Machado J.H., Mitchell M. Nerve Agents: What They Are, How They Work, How to Counter Them. ACS Chem. Neurosci. 2018;9:873–885. doi: 10.1021/acschemneuro.8b00148. PubMed DOI

Tammelin L.E. Dialkoxy-phosphorylthiocholines, alkoxy-methyl-phosphorylthiocholines and analogous choline esters. Syntheses, pKa of tertiary homologues and cholinesterase inhibition. Acta Chem. Scand. 1957;11:1340–1349. doi: 10.3891/acta.chem.scand.11-1340. DOI

Tammelin L.E. Methyl-fluoro-phosphorylcholines. Two synthetic cholinergic drugs and their tertiary homologues. Acta Chem. Scand. 1957;11:859–865. doi: 10.3891/acta.chem.scand.11-0859. DOI

Makhaeva G.F., Filonenko I.V., Yankovskaya V.L., Fomicheva S.B., Malygin V.V. Comparative studies of O,O-dialkyl-O-chloromethylchloroformimino phosphates: Interaction with neuropathy target esterase and acetylcholinesterase. Neurotoxicology. 1998;19:623–628. PubMed

Rozengart E.V., Basova N.E., Moralev S.N., Lushchekina S.V., Masson P., Varfolomeev S.D. Research on cholinesterases in the Soviet Union and Russia: A historical perspective. Chem. Biol. Interact. 2013;203:3–9. doi: 10.1016/j.cbi.2013.02.002. PubMed DOI

Macilawain C. Study proves Iraq used nerve gas. Nature. 1993;363:3. doi: 10.1038/363003b0. PubMed DOI

BBC. [(accessed on 3 January 2020)]; Available online: http://news.bbc.co.uk/onthisday/hi/dates/stories/march/16/newsid_4304000/4304853.stm.

United Nations. [(accessed on 3 January 2020)]; Available online: http://www.sciencediplomacy.org/perspective/2015/intersection-science-and-chemical-disarmament.

Yanagisawa N. The nerve agent sarin: History, clinical manifestations, and treatment. Brain Nerve. 2014;66:561–569. PubMed

Yanagisawa N., Morita H., Nakajima T. Sarin Experiences in Japan: Acute Toxicity and Long-term Effects. J. Neurol. Sci. 2006;249:76–85. doi: 10.1016/j.jns.2006.06.007. PubMed DOI

Nagao M., Takatori T., Matsuda Y., Nakajima M., Iwase H., Iwadate K. Definitive for Evidence for the Acute Sarin Poisoning Diagnosis in Tokyo Subway. Toxicol. Appl. Pharm. 1997;144:198–203. doi: 10.1006/taap.1997.8110. PubMed DOI

Greaves I., Hunt P. Responding to Terrorism: A Medical Handbook. Churchill Livingstone; London, UK: 2011.

Evison D., Hinsley D., Rice P. Chemical Weapons. BMJ. 2002;324:332–335. doi: 10.1136/bmj.324.7333.332. PubMed DOI PMC

Riddle J.R., Brown M., Smith T., Ritchie E.C., Brix K.A., Romano J. Chemical warfare and the Gulf War: A review of the impact on Gulf Veteran’s health. Mil. Med. 2003;168:606–613. doi: 10.1093/milmed/168.8.606. PubMed DOI

Gooch E.E. Chemistry and Warfare: A general studies course. J. Chem. Ed. 2002;79:820–821. doi: 10.1021/ed079p820. DOI

Jang Y.J., Kim K., Tsay O.G., Atwood D.A., Churchill D.G. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2015;115:PR1–PR76. doi: 10.1021/acs.chemrev.5b00402. PubMed DOI

Organisation for the Prohibition of Chemical Weapons—OPCW. [(accessed on 3 March 2020)]; Available online: https://www.opcw.org/sites/default/files/documents/EC/87/en/ec87nat14_e_.pdf.

Arms Control Association ChemicalWeapons: Frequently Asked Questions. [(accessed on 6 March 2020)]; Available online: https://www.armscontrol.org/factsheets/Chemical-Weapons-Frequently-Asked-Questions.

Nozaki H., Aikawa N., Fujishima S., Suzuki M., Shinozawa Y., Hori S., Nogawa W. A case of VX poisoning and the difference from sarin. Lancet. 1995;346:698–699. doi: 10.1016/S0140-6736(95)92306-3. PubMed DOI

Raveh L., Eisenkraft A., Weissman B.A. Caramiphen edisylate: An optimal antidote against organophosphate poisoning. Toxicology. 2014;325:115–124. doi: 10.1016/j.tox.2014.09.005. PubMed DOI

Dolgin E. Syrian gas attack reinforces need for better anti-sarin drugs. Nat. Med. 2013;19:1194–1195. doi: 10.1038/nm1013-1194. PubMed DOI

Kaiser J. As Syria Crisis Mounts, Scientist Looks Back at Last Major Chemical Attack. Science. 2013;341:1051. doi: 10.1126/science.341.6150.1051. PubMed DOI

Patrick K., Stanbrook M., Flegel K. Lest We Forget: Why the Use of Chemical Weapons Must not Go Unchallenged. Can. Med. Assoc. J. 2013;185:1299. doi: 10.1503/cmaj.131359. PubMed DOI PMC

Science Mag. [(accessed on 3 January 2020)]; Available online: https://www.sciencemag.org/news/2013/08/syria-crisis-mounts-scientist-looks-back-25-years-after-investigating-halabja-gas.

Enserink M.U.N. Taps Special Labs to Investigate Syrian Attack. Science. 2013;341:1050–1051. doi: 10.1126/science.341.6150.1050. PubMed DOI

Vogel L. WHO releases guidelines for treating chemical warfare victims after possible Syria attacks. Can. Med. Assoc. J. 2013;185:E665. doi: 10.1503/cmaj.109-4592. PubMed DOI PMC

Gulland A. Lack of atropine in Syria hampers treatment after gas attacks. BMJ. 2013;347:f5413. doi: 10.1136/bmj.f5413. PubMed DOI

Asai Y., Arnold J.L. Terrorism in Japan. Prehospital Disaster Med. 2003;18:106. doi: 10.1017/S1049023X00000844. PubMed DOI

OPCW. [(accessed on 3 January 2020)]; Available online: https://www.opcw.org/news/article/statement-from-opcw-spokesperson-in-response-to-media-queries-regarding-alleged-use-of-nerve-agent-vx-in-malaysia/

Sputnik News. [(accessed on 3 January 2020)]; Available online: https://sputniknews.com/asia/201703031051219306-opcw-kim-jong-nam-probe/

Channels New Asia. [(accessed on 3 January 2020)]; Available online: http://www.channelnewsasia.com/news/asiapacific/malaysia-to-fully-cooperate-with-opcw-on-vx-probe-ministry/3564532.html.

Yle Uutiset. [(accessed on 3 January 2020)]; Available online: http://yle.fi/uutiset/3-9503798.

BBC. [(accessed on 3 January 2020)]; Available online: http://www.bbc.com/news/world-europe-43835774.

Organisation for the Prohibition of Chemical Weapons—OPCW SAB Director-General’s Request to the Scientific Advisory Board to Provide Advice on New Types of Nerve Agents. [(accessed on 3 March 2020)];2018 May 2; Available online: https://www.opcw.org/sites/default/files/documents/S_series/2018/en/s-1621-2018_e_pdf.

Nepovimova E., Kuča K. Chemical warfare agent NOVICHOK—Mini-review of available data. Food Chem. Toxicol. 2018;121:343–350. doi: 10.1016/j.fct.2018.09.015. PubMed DOI

França T.C.C., Kitagawa D.A.S., Cavalcante S.F.A., da Silva J.A.V., Nepovimova E., Kuča K. Novichoks: The Dangerous Forth Generation of Chemical Weapons. Int. J. Mol. Sci. 2019;20:1222. doi: 10.3390/ijms20051222. PubMed DOI PMC

US Department of Commerce—Bureau of Industry and Security Impact of Proposed Additions to the ‘‘Annex on Chemicals’’ to the Chemical Weapons Convention (CWC) on Legitimate Commercial Chemical, Biotechnology, and Pharmaceutical Activities Involving ‘‘Schedule 1′’ Chemicals (Including Schedule 1 Chemicals Produced as Intermediates) [(accessed on 3 January 2020)]; Available online: https://www.cwc.gov/84%20FR%2040389%20I%20NOI%20on%20Schedule%201%20Novichoks%20-%20Impact%20proposed%20CWC%20additions%208-14-19.pdf.

Organisation for the Prohibition of Chemical Weapons—OPCW Note by the Technical Secretariat: Consolidated Text of Adopted Changes to Schedule 1 of the Annex on Chemicals to the Chemical Weapons Convention. [(accessed on 3 January 2020)]; Available online: https://www.opcw.org/sites/default/files/documents/2019/12/s-1820-2019%28e%29.pdf.

Sommer H.Z., Wicks G.E., Jr. Chemical Agents. 4241212. U.S. Patent. 1980 Dec 23;

Ellison H.D. Handbook of Chemical and Biological Warfare Agents. CRC Press; Boca Raton, FL, USA: 2008.

Tucker J. War of Nerves: Chemical Warfare from World War I to Al-Qaeda. Anchor; New York, NY, USA: 2007.

Schwenk M. Chemical warfare agents. Classes and targets. Toxicol. Lett. 2017;293:253–263. doi: 10.1016/j.toxlet.2017.11.040. PubMed DOI

Soltaninejad K., Shadnia S. In: Basic and Clinical Toxicology of Organophosphorus Compounds. Balali-Mood M., Abdollahi M., editors. Springer; London, UK: 2014.

Moyer R.A., Sidell F.R., Salem H. In: Encyclopedia of Toxicology. Wexler P., editor. Elsevier Science; Amsterdam, The Netherlands: 2014. pp. 483–488.

Talabani J.M., Ali A.I., Kadir A.M., Rashid R., Samin F., Greenwood D., Hay A.W.M. Long-term health effects of chemical warfare agents on children following a single heavy exposure. Hum. Exp. Toxicol. 2018;37:836–847. doi: 10.1177/0960327117734620. PubMed DOI

Worek F., Wille T., Koller M., Thiermann H. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch. Toxicol. 2016;90:2131–2145. doi: 10.1007/s00204-016-1772-1. PubMed DOI

Chowdhary S., Bhattacharyya R., Banerjee D. Acute organophosphorus poisoning. Clin. Chim. Acta. 2014;431:66–76. doi: 10.1016/j.cca.2014.01.024. PubMed DOI

Quinn D.M. Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, and Virtual Transition States. Chem. Rev. 1987;87:955–979. doi: 10.1021/cr00081a005. DOI

Chatonnet A., Lockridge O. Comparison of Butyrylcholinestarse and Acetylcholinesterase. Biochem. J. 1989;260:625–634. doi: 10.1042/bj2600625. PubMed DOI PMC

Saxena A., Redman A.M.G., Jiang X., Lockridge O., Doctor B.P. Differences in Active Site Gorge Dimensions of Cholinesterases Revealed by Binding of Inhibitors to Human Butyrylcholinesterase. Chem. Biol. Interact. 1999;119–120:61–69. doi: 10.1016/S0009-2797(99)00014-9. PubMed DOI

Taylor P. The Cholinesterases. J. Biol. Chem. 1991;266:4025–4028. PubMed

Taylor P., Radić Z. The Cholinesterases: From Genes to Proteins. Annu. Rev. Pharmacol. Toxicol. 1994;34:281–320. doi: 10.1146/annurev.pa.34.040194.001433. PubMed DOI

Sussman J.L., Silman I. Acetylcholinesterase: Structure and use as a model for specific cation-protein interactions. Curr. Opin. Struct. Biol. 1992;2:721–729. doi: 10.1016/0959-440X(92)90207-N. DOI

Soreq H., Seidman S. Acetylcholinesterase—New Roles for an Old Actor. Nat. Rev. 2001;2:294–302. doi: 10.1038/35067589. PubMed DOI

Silman I., Sussman J.L. Acetylcholinesterase: “Classical” and “Non-classical” Functions and Pharmacology. Curr. Opin. Pharmacol. 2005;5:293–302. doi: 10.1016/j.coph.2005.01.014. PubMed DOI

Dvir H., Silman I., Harel M., Rosenberry T.L., Sussman J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 2010;187:10–22. doi: 10.1016/j.cbi.2010.01.042. PubMed DOI PMC

Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther. 2015;148:34–46. doi: 10.1016/j.pharmthera.2014.11.011. PubMed DOI

Nobel Prize Foundation. [(accessed on 3 March 2020)]; Available online: http://www.nobelprize.org/nobel_prizes/peace/laureates/2013/opcw-facts.html.

Black R.M., Harrison J.M. In: The Chemistry of Organophosphorus Compounds, Vol 4, Ter- and Quinquephosphorus Acids and Their Derivatives. Hartley F.R., editor. John Wiley & Sons; Chichester, UK: 1996. pp. 781–840.

Mundy J.L., Harrison J.M., Watts P., Timperley C.M. Isotopically labelled phosphorus compounds: Some deuterated methyl and ethyl derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2006;181:1847–1857. doi: 10.1080/10426500500543008. DOI

Timperley C.M. Best Synthetic Methods. 1st ed. Chemistry Academic Press; Massachusetts, MA, USA: 2014. Organophosphorus (V)

Ledgard J. The Preparatory Manual of Chemical Warfare Agents. 3rd ed. UVKCHEM; Puyallup, UK: 2006.

Tajti Á., Keglevich G. The importance of organophosphorus compounds as biologically active agents. In: Keglevich G., editor. Organophosphorus Chemistry—Novel Developments. De Gruyter; Berlin, Germany: Boston, MA, USA: 2018. pp. 53–65. Chapter 3.

Mattes C.E., Lynch T.J., Singh A., Bradley R.M., Kellaris P.A., Brady R.O., Dretchen K.L. Therapeutic use of butyrylcholinesterase for cocaine intoxication. Toxicol. Appl. Pharmacol. 1997;145:372–380. doi: 10.1006/taap.1997.8188. PubMed DOI

Carmona G.N., Jufer R.A., Goldberg S.R., Gorelick D.A., Greig N.H., Yu Q.S., Cone E.J., Schindler C.W. Butyrylcholinesterase accelerates cocaine metabolism: In vitro and in vivo effects in nonhuman primates and humans. Drug Metab. Dispos. 2000;28:367–371. PubMed

Brimijoin S., Gao Y., Geng L., Chen V.P. Treating Cocaine Addiction, Obesity, and Emotional Disorders by Viral Gene Transfer of Butyrylcholinesterase. Front. Pharmacol. 2018;9:1–6. doi: 10.3389/fphar.2018.00112. PubMed DOI PMC

Murthy V., Brimijoin S. Cocaine and Butyrylcholinesterase Gene Therapy. In: Preedy V.R., editor. The Neuroscience of Cocaine—Mechanisms and Treatment. Academic Press; Cambridge, MA, USA: 2017. pp. 673–678. Chapter 68.

Masson P., Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: Catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys. 2010;494:107–120. doi: 10.1016/j.abb.2009.12.005. PubMed DOI PMC

Zhang P., Jain P., Tsao C., Sinclair A., Sun F., Hung H.-C., Bai T., Wu K., Jiang S. Butyrylcholinesterase nanocapsule as a long circulating bioscavenger with reduced immune response. J. Control. Release. 2016;230:73–78. doi: 10.1016/j.jconrel.2016.04.008. PubMed DOI

Rice H., Mann T.M., Armstrong S.J., Price M.E., Green A.C., Tattersall J.E.H. The potential role of bioscavenger in the medical management of nerve-agent poisoned casualties. Chem. Biol. Interact. 2016;259:175–181. doi: 10.1016/j.cbi.2016.04.038. PubMed DOI

Lushchekina S.V., Schopfer L.M., Grigorenko B.L., Nemukhin A.V., Varfolomeev S.D., Lockridge O., Masson P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front. Pharmacol. 2018;9:1–13. doi: 10.3389/fphar.2018.00211. PubMed DOI PMC

Nachon F., Brazzolotto X., Trovaslet M., Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem. Biol. Interact. 2013;206:536–544. doi: 10.1016/j.cbi.2013.06.012. PubMed DOI

Cerasoli D.M., Griffiths E.M., Doctor B.P., Saxena A., Fedorko J.M., Greig N.H., Yu Q.S., Huang Y., Wilgus H., Karatzas C.N., et al. In vitro and in vivo characterization of recombinant human butyrylcholinesterase (Protexia) as a potential nerve agent bioscavenger. Chem. Biol. Interact. 2005;157–158:363–365. doi: 10.1016/j.cbi.2005.10.052. PubMed DOI

Musilek K., Holas O., Horova A., Pohanka M., Zdarova-Karasova J., Jun D., Kuca K. In: Pesticides in the Modern World—Effects of Pesticides Exposure. Stoytcheva M., editor. InTech; London, UK: 2011. [(accessed on 3 March 2020)]. Available online: http://www.intechopen.com/books/pesticides-in-the-modern-worldeffects-of-pesticides-exposure/progress-in-antidotes-acetylcholinesterase-reactivators-againstorganophosphorus-pesticides.

Thomas E.A., Bornstein J.C. Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission. Neuroscience. 2003;120:333–351. doi: 10.1016/S0306-4522(03)00039-3. PubMed DOI

Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D., et al. Mutagenesis of Human Acetylcholinesterase. J. Biol. Chem. 1992;25:17640–17648. PubMed

Lockridge O. Structure of human serum cholinesterase. Bioessays. 1988;9:125–128. doi: 10.1002/bies.950090406. PubMed DOI

Vellom D.C., Radic Z., Li Y., Pickering N.A., Camp S., Taylor P. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993;32:12–17. doi: 10.1021/bi00052a003. PubMed DOI

Hörnberg A., Tunemalm A.K., Ekström F. Crystal structures of acetylcholinesterase in complex with organophosphorus compounds suggest that the acyl pocket modulates the aging reaction by precluding the formation of the trigonal bipyramidal transition state. Biochemistry. 2007;46:4815–4825. doi: 10.1021/bi0621361. PubMed DOI

Bartling A., Worek F., Szinicz L., Thiermann H. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Toxicology. 2007;233:166–172. doi: 10.1016/j.tox.2006.07.003. PubMed DOI

Nicolet Y., Lockridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. Biol. Chem. 2003;278:41141–41147. doi: 10.1074/jbc.M210241200. PubMed DOI

Bencsura A., Enyedy I.Y., Kovach I.M. Probing the Active Site of Acetylcholinesterase by Molecular Dynamics of Its Phosphonate Ester Adducts. J. Am. Chem. Soc. 1996;118:8531–8541. doi: 10.1021/ja952406v. DOI

Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. Alzheimer’s disease. Lancet. 2011;377:1019–1031. doi: 10.1016/S0140-6736(10)61349-9. PubMed DOI

Okumura T., Seto Y., Fuse A. Countermeasures against chemical terrorism in Japan. Forensic Sci. Int. 2013;227:2–6. doi: 10.1016/j.forsciint.2012.11.008. PubMed DOI

Tu A.T. Aum Shinrikyo’s chemical and biological weapons: More than sarin. Forensic Sci. Rev. 2014;26:115–120. PubMed

Hardacre H. Aum Shinrikyo and the Japanese Media. [(accessed on 3 March 2020)];1996 JPRI Working Paper No. 19. Available online: http://www.jpri.org/publications/workingpapers/wp19.html.

Hroudová J., Singh N., Fišar Z., Ghosh K.K. Progress in drug development for Alzheimer’s disease: An overview in relation to mitochondrial energy metabolism. Eur. J. Med. Chem. 2016;121:774–784. doi: 10.1016/j.ejmech.2016.03.084. PubMed DOI

Seto Y. The Sarin Gas Attack in Japan and the Related Forensic Investigation. [(accessed on 20 January 2020)];OPCW Synth. 2001 June:14–17. Available online: https://www.opcw.org/news/article/the-sarin-gas-attack-in-japan-and-the-related-forensic-investigation.

Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuča K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI

Pohanka M. Cholinesterases, a target of Pharmacology and Toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011;155:219–230. doi: 10.5507/bp.2011.036. PubMed DOI

Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008–present) Expert Opin. Ther. Pat. 2012:1–16. doi: 10.1517/13543776.2012.701620. PubMed DOI

Franjesevic A.J., Sillart S.B., Beck J.M., Vyas S., Callam C.S., Hadad C.M. Ressurrectionand reactivation of acetylcholinesterase and butyrylcholinesterase. Chem. Eur. J. 2019;25:5337–5371. doi: 10.1002/chem.201805075. PubMed DOI PMC

Tõugu V. Acetylcholinesterase: Mechanism of Catalysis and Inhibition. Curr. Med. Chem. 2001;1:155–170. doi: 10.2174/1568015013358536. DOI

Greenfield S., Vaux D.J. Parkinson’s disease, Alzheimer’s disease and motor neurone disease: Identifying a common mechanism. Neuroscience. 2002;113:485–492. doi: 10.1016/S0306-4522(02)00194-X. PubMed DOI

Brinton R.D., Yamazaki R.S. Advances and Challenges in the Prevention and Treatment of Alzheimer’s Disease. Pharm. Res. 1998;15:386–398. doi: 10.1023/A:1011963929012. PubMed DOI

Butterfield D.A., Lauderback C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 2002;32:1050–1060. doi: 10.1016/S0891-5849(02)00794-3. PubMed DOI

Blennow K., de Leon M.J., Zetterberg K. Alzheimer’s disease. Lancet. 2006;368:387–403. doi: 10.1016/S0140-6736(06)69113-7. PubMed DOI

Scarpinia E., Schelternsa P., Feldman H. Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol. 2003;2:539–547. doi: 10.1016/S1474-4422(03)00502-7. PubMed DOI

Rösler M., Anand R., Cicin-Sain A., Gauthier S., Agid Y., Dal-Bianco P., Stähelin H.B., Hartman R., Gharabawi M. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: International randomised controlled trial. BMJ. 1999;318:633–638. doi: 10.1136/bmj.318.7184.633. PubMed DOI PMC

Fifer E.K. Drugs affecting cholinergic neurotransmission. In: Lemke T.L., Williams D.A., editors. Foye’s Medicinal Chemistry. 6th ed. Lippincott Williams & Wilkins, Baltimore; Philadelphia, PA, USA: 2008. pp. 361–391. Chapter 12.

Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci. 2014;15:9809–9825. doi: 10.3390/ijms15069809. PubMed DOI PMC

Glenner G.G., Wong C.W. Alzheimer’s Disease: Initial Report Of The Purification And Characterization Of A Novel Cerebrovascular Amyloid Protein. Biochem. Biophys. Res. Commun. 1984;120:885–890. doi: 10.1016/S0006-291X(84)80190-4. PubMed DOI

Kihara T., Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol. Exp. 2004;64:99–105. PubMed

Scott L.J., Goa K.L. Galantamine: A review of its use in Alzheimer’s disease. Drugs. 2000;60:1095–1122. doi: 10.2165/00003495-200060050-00008. PubMed DOI

Woodruff-Pak D.S., Vogel R.W., Wenk G.L. Galantamine: Effect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning. Proc. Natl. Acad. Sci. USA. 2001;98:2089–2094. doi: 10.1073/pnas.98.4.2089. PubMed DOI PMC

Albuquerque E.X., Pereira E.F.R., Aracava Y., Fawcett W.P., Oliveira M., Randall W.R., Adler M. Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents. Proc. Natl. Acad. Sci. USA. 2006;103:13220–13225. doi: 10.1073/pnas.0605370103. PubMed DOI PMC

Xia P., Chen H.S., Zhang D., Lipton S.A. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci. 2010;30:11246–11250. doi: 10.1523/JNEUROSCI.2488-10.2010. PubMed DOI PMC

Robinson D.M., Keating G.M. Memantine: A review of its use in Alzheimer’s disease. Drugs. 2006;66:1515–1534. doi: 10.2165/00003495-200666110-00015. PubMed DOI

Jann M.W. Rivastigmine, a New-Generation Cholinesterase Inhibitor for the Treatment of Alzheimer’s Disease. Pharmacotherapy. 2000;20:1–12. doi: 10.1592/phco.20.1.1.34664. PubMed DOI

Khoury R., Rajamanickam J., Grossberg G.T. An update on the safety of current therapies for Alzheimer’s disease: Focus on rivastigmine. Ther. Adv. Drug Saf. 2018;9:171–178. doi: 10.1177/2042098617750555. PubMed DOI PMC

Sun X., Jin L., Ling P. Review of drugs for Alzheimer’s disease. Drug Discov. Ther. 2012;6:285–290. doi: 10.5582/ddt.2012.v6.6.285. PubMed DOI

Lao K., Ji N., Zhang X., Qiao W., Tang Z., Gou X. Drug development for Alzheimer’s disease: Review. J. Drug Target. 2019;27:164–173. doi: 10.1080/1061186X.2018.1474361. PubMed DOI

Hung S.Y., Fu W.M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci. 2017;24:47–58. doi: 10.1186/s12929-017-0355-7. PubMed DOI PMC

Cummings J., Lee G., Ritter A., Sabbagh M., Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 2019;5:272–293. doi: 10.1016/j.trci.2019.05.008. PubMed DOI PMC

Cazarim M.S., Moriguti J.C., Ogunjimi A.T., Pereira L.R.L. Perspectives for treating Alzheimer’s disease: A review on promising pharmacological substances. Sao Paulo Med. J. 2016;134:342–354. doi: 10.1590/1516-3180.2015.01980112. PubMed DOI PMC

Galimberti D., Ghezzi L., Scarpini E. Immunotherapy against amyloid pathology in Alzheimer’s disease. J. Neurol. Sci. 2013;333:50–54. doi: 10.1016/j.jns.2012.12.013. PubMed DOI

Skaper S.D. Alzheimer’s disease and amyloid: Culprit or coincidence? Int. Rev. Neurobiol. 2012;102:277–316. PubMed

Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi: 10.1126/science.1072994. PubMed DOI

Ningthoujam D.S., Mukherjee S., Devi L.J., Singh E.S., Tamreihao K., Khunjamayum R., Banerjee S., Mukhopadhyay D. In vitro degradation of β-amyloid fibrils by microbial keratinase. Alzheimers Dement. 2019;5:154–163. doi: 10.1016/j.trci.2019.03.003. PubMed DOI PMC

Guzior N., Bajda M., Skrok M., Kurpiewsk K., Lewiński K., Brus B., Pišlar A., Kos J., Gobec S., Malawska B. Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties. Eur. J. Med. Chem. 2015;92:738–749. doi: 10.1016/j.ejmech.2015.01.027. PubMed DOI

Johnson G., Moore S.W. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Curr. Pharm. Des. 2006;12:217–225. doi: 10.2174/138161206775193127. PubMed DOI

Inestrosa N.C., Alvarez A., Pérez C.A., Moreno R.D., Vicente M., Linker C., Casanueva O.I., Soto C., Garrido J. Acetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer’s Fibrils: Possible Role of the Peripheral Site of the Enzyme. Neuron. 1996;16:881–891. doi: 10.1016/S0896-6273(00)80108-7. PubMed DOI

Das B., Yan R. Role of BACE1 in Alzheimer’s synaptic function. Transl. Neurodegener. 2017;6:1–8. doi: 10.1186/s40035-017-0093-5. PubMed DOI PMC

Coimbra J.R.M., Marques D.F.F., Baptista S.J., Pereira C.M.F., Moreira P.I., Dinis T.C.P., Santos A.E., Salvador J.A.R. Highlights in BACE1 Inhibitors for Alzheimer’s Disease Treatment. Front. Chem. 2018;6:1–10. doi: 10.3389/fchem.2018.00178. PubMed DOI PMC

Das B., Yan R. A Close Look at BACE1 Inhibitors for Alzheimer’s Disease Treatment. CNS Drugs. 2019;33:251–263. doi: 10.1007/s40263-019-00613-7. PubMed DOI PMC

Deng Y., Wang Z., Wang R., Zhang X., Zhang S., Wu Y., Staufenbiel M., Cai F., Song W. Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1 (BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. Eur. J. Neurosci. 2013;37:1962–1969. doi: 10.1111/ejn.12235. PubMed DOI

Vassar R. BACE1: The beta-secretase enzyme in Alzheimer’s disease. J. Mol. Neurosci. 2004;23:105–114. doi: 10.1385/JMN:23:1-2:105. PubMed DOI

Cole S.L., Vassar R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol. Neurodegener. 2007;2:1–25. doi: 10.1186/1750-1326-2-22. PubMed DOI PMC

Egan M.F., Kost J., Voss T., Mukai Y., Aisen P.S., Cummings J.L., Tariot P.N., Vellas B., van Dyck C.H., Boada M., et al. Randomized Trial of Verubecestat for Prodromal Alzheimer’s Disease. N. Engl. J. Med. 2019;380:1408–1420. doi: 10.1056/NEJMoa1812840. PubMed DOI PMC

Doggrell S.A. Lessons that can be learnt from the failure of verubecestat in Alzheimer’s disease. Expert Opin. Pharmacother. 2019;20:2095–2099. doi: 10.1080/14656566.2019.1654998. PubMed DOI

Mdawar B., Ghossoub E., Khoury R. Selective serotonin reuptake inhibitors and Alzheimer’s disease. Neural Regen. Res. 2020;15:41–46. PubMed PMC

Elsworthy R.J., Aldred S. Depression in Alzheimer’s Disease: An Alternative Role for Selective Serotonin Reuptake Inhibitors? J. Alzheimers Dis. 2019;69:651–661. doi: 10.3233/JAD-180780. PubMed DOI

Sepehry A.A., Lee P.E., Hsiung G.Y., Beattie B.L., Jacova C. Effect of selective serotonin reuptake inhibitors in Alzheimer’s disease with comorbid depression: A meta-analysis of depression and cognitive outcomes. Drugs Aging. 2012;29:793–806. doi: 10.1007/s40266-012-0012-5. PubMed DOI

Xie Y., Liu P.P., Lian Y.J., Liu H.B., Kang J.S. The effect of selective serotonin reuptake inhibitors on cognitive function in patients with Alzheimer’s disease and vascular dementia: Focusing on fluoxetine with long follow-up periods. Signal Transduct. Target. Ther. 2019;4:30–32. doi: 10.1038/s41392-019-0064-7. PubMed DOI PMC

Kargbo R.B. Treatment of Alzheimer’s by PROTAC-Tau Protein Degradation. ACS Med. Chem. Lett. 2019;10:699–700. doi: 10.1021/acsmedchemlett.9b00083. PubMed DOI PMC

Konstantinidou M., Li J., Zhang B., Wang Z., Shaabani S., Ter Brake F., Essa K., Dömling A. PROTACs- a game-changing technology. Expert Opin. Drug Discov. 2019;14:1255–1268. doi: 10.1080/17460441.2019.1659242. PubMed DOI PMC

Kumar V. Potential medicinal plants for CNS disorders: An overview. Phytother. Res. 2006;20:1023–1035. doi: 10.1002/ptr.1970. PubMed DOI

White R.F., Steele L., O’Callaghan J.P., Sullivan K., Binns J.H., Golomb B.A., Bloom F.E., Bunker J.A., Crawford F., Graves J.C. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex. 2016;74:449–475. doi: 10.1016/j.cortex.2015.08.022. PubMed DOI PMC

Macht V.A., Woodruff J.L., Grillo C.A., Wood C.S., Wilson M.A., Reagan L.P. Pathophysiology in a model of Gulf War Illness: Contributions of pyridostigmine bromide and stress. Psychoneuroendocrinology. 2018;96:195–202. doi: 10.1016/j.psyneuen.2018.07.015. PubMed DOI

Shen Z.-X. Pyridostigmine bromide and Gulf War syndrome. Med. Hypotheses. 1998;51:235–237. doi: 10.1016/S0306-9877(98)90081-0. PubMed DOI

Wagner M.J., Promes S., editors. Last Minute Emergency Medicine: A Concise Review for the Specialty Boards. McGraw-Hill Medical; New York, NY, USA: 2007.

Wright L.K.M., Lee R.B., Vincelli N.M., Whalley C.E., Lumley L.A. Female rats are less susceptible during puberty to the lethal effects of percutaneous exposure to VX. Toxicol. Lett. 2016;241:167–174. doi: 10.1016/j.toxlet.2015.11.023. PubMed DOI

Zhuang Q., Young A., Callam C.S., McElroy C.A., Ekici O.D., Yoder R.J., Hadad C.M. Efforts towards treatment against aging organophosphorus-inhibited acetylcholinesterase. Ann. N. Y. Acad. Sci. 2016;1374:94–104. doi: 10.1111/nyas.13124. PubMed DOI PMC

Cavalcante S.F.A., Kitagawa D.A.S., Rodrigues R.B., Bernardo L.B., da Silva T.N., dos Santos W.V., Correa A.B.A., de Almeida J.S.F.D., França T.C.C., Kuča K., et al. Synthesis and in vitro evaluation of neutral aryloximes as reactivators of Electrophorus eel acetylcholinesterase inhibited by NEMP, a VX surrogate. Chem. Biol. Interact. 2019 doi: 10.1016/j.cbi.2019.05.048. PubMed DOI

Kitagawa D.A.S., Cavalcante S.F.A., de Paula R.L., Rodrigues R.B., Bernardo L.B., da Silva M.C.J., da Silva T.N., dos Santos W.V., Granjeiro J.M., de Almeida J.S.F.D., et al. In Vitro Evaluation of Neutral Aryloximes as Reactivators for Electrophorus eel Acetylcholinesterase Inhibited by Paraoxon. Biomolecules. 2019;9:583. doi: 10.3390/biom9100583. PubMed DOI PMC

Benson S.W. Bond Energies. J. Chem. Ed. 1965;42:502–518. doi: 10.1021/ed042p502. DOI

Reuters. [(accessed on 3 January 2020)]; Available online: www.reuters.com/article/india-children-idUSL4N0FO18520130718.

BBC. [(accessed on 3 January 2020)]; Available online: http://www.bbc.com/news/world-asia-23390972.

Stokstad E. Pesticides Under Fire for Risks to Pollinators. Science. 2013;340:674–676. doi: 10.1126/science.340.6133.674. PubMed DOI

Tomizawa M., Casida J.E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 2005;45:24–268. doi: 10.1146/annurev.pharmtox.45.120403.095930. PubMed DOI

Milatovic D., Jokanovic M. Pyridinium Oximes as Cholinesterase Reactivators in the Treatment of OP Poisoning. In: Gupta R.C., editor. Handbook of Toxicology of Chemical Warfare Agents. Elsevier; Amsterdam, Netherlands: 2009. pp. 985–994. Chapter 65.

Kuča K., Musilek K., Jun D., Bajgar J., Kassa J. Novel Oximes. In: Gupta R.C., editor. Elsevier Handbook of Toxicology of Chemical Warfare Agents. Elsevier; Amsterdam, The Netherlands: 2009. pp. 997–1021. Chapter 66.

Worek F., Thiermann H., Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem. Biol. Interact. 2016;259:93–98. doi: 10.1016/j.cbi.2016.04.032. PubMed DOI

Ribeiro T.S., Prates A., Alves S.R., Oliveira-Silva J.J., Riehl C.A.S., Figueroa-Villar J.D. The Effect of Neutral Oximes on the Reactivation of Human Acetylcholinesterase Inhibited with Paraoxon. J. Braz. Chem. Soc. 2012;23:1216–1225. doi: 10.1590/S0103-50532012000700004. DOI

Mumford H., Docx C.J., Price M.E., Green A.C., Tattersall J.E.H., Armstrong S.J. Human plasma-derived BuChE as a stoichiometric bioscavenger for treatment of nerve agent poisoning. Chem. Biol. Interact. 2013;203:160–166. doi: 10.1016/j.cbi.2012.08.018. PubMed DOI

Ilyushin D.G., Smirnov I.V., Belogurov A.A., Jr., Dyachenko I.A., Zharmukhamedova T.I., Novozhilova T.I., Bychikhin E.A., Serebryakova M.V., Kharybin O.N., Murashev A.N., et al. Chemical polysialylation of human recombinant butyrylcholinesterase delivers a long-acting bioscavenger for nerve agents in vivo. Proc. Natl. Acad. Sci. USA. 2013;110:1243–1248. doi: 10.1073/pnas.1211118110. PubMed DOI PMC

Valiyaveettil M., Alamneh Y., Rezk P., Biggemann L., Perkins M.W., Scieuto A.M., Doctor B.P., Nambiar M.P. Protective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs. Biochem. Pharmacol. 2011;81:800–809. doi: 10.1016/j.bcp.2010.12.024. PubMed DOI

Trovaslet-Leroy M., Musilova L., Renault F., Brazzolotto X., Misik J., Novotny L., Froment M.T., Gillon E., Loiodice M., Verdier L., et al. Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Toxicol Lett. 2011;206:14–23. doi: 10.1016/j.toxlet.2011.05.1041. PubMed DOI

Black R.M., Clarke R.J., Read R.W., Reid M.T.J. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J. Chromatogr. A. 1994;662:301–321. doi: 10.1016/0021-9673(94)80518-0. PubMed DOI

Lee J.Y., Lee Y.H. Liquid chromatography-tandem mass spectrometry determination of the degradation products of V-type nerve agents, N,N-dialkylaminoethanesulfonic acids. J. Anal. Chem. 2015;70:1001–1007. doi: 10.1134/S1061934815080110. DOI

Kientz C.E. Chromatography and mass spectrometry of chemical warfare agents, toxins and related compounds: State of the art and future prospects. J. Chromatogr. A. 1998;814:1–23. doi: 10.1016/S0021-9673(98)00338-0. PubMed DOI

Koller M., Becker C., Thiermann H., Worek F. GC-MS and LC-MS analysis of nerve agents in body fluids: Intra-laboratory verification test using spiked plasma and urine samples. J. Chromatogr. B. 2010;878:1226–1233. doi: 10.1016/j.jchromb.2009.12.023. PubMed DOI

Mesilaakso M., editor. Chemical Weapons Convention Chemicals Analysis: Sample Collection, Preparation and Analytical Methods. Wiley; Chichester, UK: 2015.

Vanninen P., editor. Recommended Operating Procedures for Analysis in the Verification of Chemical Disarmament. The Ministry of Foreign Affairs of Finland, University of Helsinki; Helsinki, Finland: 2011.

Black R.M., Muir B. Derivatisation reactions in the chromatographic analysis of chemical warfare agents and their degradation products. J. Chromatogr. A. 2003;1000:253–281. doi: 10.1016/S0021-9673(03)00183-3. PubMed DOI

Read M.W., Black R.M. Rapid screening procedures for the hydrolysis products of chemical warfare agents using positive and negative ion liquid chromatography-mass spectrometry with atmospheric pressure chemical ionisation. J. Chromatogr. A. 1999;862:169–177. doi: 10.1016/S0021-9673(99)00944-9. PubMed DOI

Driskell W.J., Shih M., Needham L.L., Barr D.B. Quantitation of organophosphorus nerve agent metabolites in human urine using isotope dilution gas chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2002;26:6–10. doi: 10.1093/jat/26.1.6. PubMed DOI

Sega G.A., Tomkins B.A., Griest W.H. Analysis of methylphosphonic acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid at low microgram per liter levels in groundwater. J. Chromatogr. A. 1997;790:143–152. doi: 10.1016/S0021-9673(97)00747-4. PubMed DOI

Noort D., Hulst A.G., Platenburg D.H.J.M., Polhuijs M., Benschop H.P. Quantitative analysis of O-isopropyl methylphosphonic acid in serum samples of Japanese citizens allegedly exposed to sarin: Estimation of internal dosage. Arch. Toxicol. 1998;72:671–675. doi: 10.1007/s002040050559. PubMed DOI

Noort D., Benschop H.P., Black R.M. Biomonitoring of exposure to chemical warfare agents: A review. Toxicol. Appl. Pharmacol. 2002;184:116–126. doi: 10.1006/taap.2002.9449. PubMed DOI

Mathews T.P., Carter M.D., Johnson D., Isenberg S.L., Graham L.A., Thomas J.D., Johnson R.C. High-Confidence Qualitative Identification of Organophosphorus Nerve Agent Adducts to Human Butyrylcholinesterase. Anal. Chem. 2017;89:1955–1964. doi: 10.1021/acs.analchem.6b04441. PubMed DOI PMC

Bielmann A., Curty C., Bochet C.G. Solid-Phase Synthesis of the Aged-Nonapeptide-Nerve-Agent Adduct of Butyrylcholinesterase as Reference Materials for Analytical Verification. Helv. Chim. Acta. 2019;100:e1700198. doi: 10.1002/hlca.201700198. DOI

Jokanovic M., Prostran M. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr. Med. Chem. 2009;16:2177–2188. doi: 10.2174/092986709788612729. PubMed DOI

Wilhelm C.M., Snider T.H., Babin M.C., Jett D.A., Platoff G.E., Jr., Yeung D.T. A comprehensive evaluation of the efficacy of leading oximes therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides. Toxicol. Appl. Pharmacol. 2014;281:254–265. doi: 10.1016/j.taap.2014.10.009. PubMed DOI PMC

Marrs T.C., Rice P., Vale J.A. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. Toxicol. Rev. 2006;25:297–323. doi: 10.2165/00139709-200625040-00009. PubMed DOI

Bajgar J., Fusek J., Kassa J., Kuča K., Jun D. Pharmacological Prophylaxis Against Nerve Agent Poisoning: Experimental Studies and Practical Implication. In: Gupta R.C., editor. Handbook of Toxicology of Chemical Warfare Agents. Elsevier; Amsterdam, The Netherlands: 2009. pp. 677–684. Chapter 64.

Cannard K.J. The acute treatment of nerve agent exposure. Neurol. Sci. 2006;249:86–94. doi: 10.1016/j.jns.2006.06.008. PubMed DOI

Yokoyama K. Our recent experiences with sarin poisoning cases in Japan and pesticide users with references to some selected chemicals. Neurotoxicology. 2007;28:364–373. doi: 10.1016/j.neuro.2006.04.006. PubMed DOI

Worek F., Wille T., Koller M., Thiermann H. Structural requirements for effective oximes—Evaluation of kinetic in vitro data with phosphylated human AChE and structurally different oximes. Chem. Biol. Interact. 2013;203:125–128. doi: 10.1016/j.cbi.2012.07.003. PubMed DOI

Kuča K., Jun D., Mušilek K. Structural Requirements of Acetylcholinesterase Reactivators. Mini Rev. Med. Chem. 2006;6:269–277. doi: 10.2174/138955706776073510. PubMed DOI

de Jong L.P.A., Verhagen M.A.A., Langenberg J.P., Hagedorn I., Löffler M. The bispyridinium-dioxime HLö-7: A potent reactivator for acetylcholinesterase inhibited by the stereoisomers of tabun and soman. Biochem. Pharmacol. 1989;38:633–640. doi: 10.1016/0006-2952(89)90209-8. PubMed DOI

Eyer P., Hagedorn I., Klimmek R., Lippstreu P., Löffler M., Oldiges H., Spöhrer U., Steidl I., Szinicz L., Worek F. HLö-7 dimethanesulfonate, a potent bispyridinium-dioxime against anticholinesterases. Arch. Toxicol. 1992;66:603–621. doi: 10.1007/BF01981499. PubMed DOI

Cabal J., Kuča K., Kassa J. Specification of the Structure of Oximes Able to Reactivate Tabun-Inhibited Acetylcholinesterase. Basic Clin. Pharmacol. Toxicol. 2004;95:81–86. doi: 10.1111/j.1742-7843.2004.950207.x. PubMed DOI

Jokanović M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: A review of recent data. Curr. Top. Med. Chem. 2012;12:1775–1789. doi: 10.2174/1568026611209061775. PubMed DOI

Aroniadou-Anderjaska V., Figueiredo T.H., Apland J.P., Prager E.M., Pidoplichko V.I., Miller S.L., Braga M.F.M. Countermeasures Against Chemical Threats Long-term neuropathological and behavioral impairments after exposure to nerve agents. Ann. N. Y. Acad. Sci. 2006;1374:17–28. doi: 10.1111/nyas.13028. PubMed DOI PMC

Aroniadou-Anderjaska V., Figueiredo T.H., Apland J.P., Qashu F., Braga M.F.M. Primary brain targets of nerve agents the role of the amygdala in comparison to the hippocampus. Neurotoxicology. 2009;30:772–776. doi: 10.1016/j.neuro.2009.06.011. PubMed DOI PMC

Moshiri M., Darchini-Maragheh E., Balali-Mood M. Advances in toxicology and medical treatment of chemical warfare nerve agents. DARU. 2012;20:1–24. doi: 10.1186/2008-2231-20-81. PubMed DOI PMC

Čolović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC

Antonijevic B., Stojiljkovic M.P. Unequal Efficacy of Pyridinium Oximes in Acute Organophosphate Poisoning. Clin. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC

Wiener S.W., Hoffman R.S. Nerve Agents: A Comprehensive Review. J. Intensive Care Med. 2004;19:22–37. doi: 10.1177/0885066603258659. PubMed DOI

McDonough J.H., Van Shura K.E., LaMont J.C., McMonagle J.D., Shih T.-M. Comparison of the Intramuscular, Intranasal or Sublingual Routes of Midazolam Administration for the Control of Soman-Induced Seizures. Basic Clin. Pharmacol. Toxicol. 2009;104:27–34. doi: 10.1111/j.1742-7843.2008.00326.x. PubMed DOI

Reddy S.D., Reddy D.S. Midazolam as an anticonvulsant antidote for organophosphate intoxication—A pharmacotherapeutic appraisal. Epilepsia. 2015;56:813–821. doi: 10.1111/epi.12989. PubMed DOI PMC

Kapoora M., Cloyd J.C., Siegelad R.A. A review of intranasal formulations for the treatment of seizure emergencies. J. Control. Release. 2016;237:147–159. doi: 10.1016/j.jconrel.2016.07.001. PubMed DOI

Candiotti K. A primer on nerve agents: What the emergency responder, anesthesiologist, and intensivist needs to know. Can. J. Anesth. 2017;64:1059–1070. doi: 10.1007/s12630-017-0920-2. PubMed DOI

Benfield J., Musto A. Intranasal Therapy to Stop Status Epilepticus in Prehospital Settings. Drugs R D. 2018;18:7–17. doi: 10.1007/s40268-017-0219-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...