Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
VT2019-2021
UHK - International
CEP - Centrální evidence projektů
L/ICA/ICB/201062/15 (2016-2018)
Organisation for the Prohibition of Chemical Weapons-OPCW - International
PubMed
32155996
PubMed Central
PMC7175162
DOI
10.3390/biom10030414
PII: biom10030414
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Chemical Weapons Convention, acetylcholinesterase, nerve agents,
- MeSH
- acetylcholinesterasa * metabolismus MeSH
- Alzheimerova nemoc * farmakoterapie enzymologie MeSH
- chemická válka zákonodárství a právo MeSH
- cholinesterasové inhibitory terapeutické užití MeSH
- GPI-vázané proteiny antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- nervová bojová látka * MeSH
- stárnutí metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- acetylcholinesterasa * MeSH
- ACHE protein, human MeSH Prohlížeč
- cholinesterasové inhibitory MeSH
- GPI-vázané proteiny MeSH
- nervová bojová látka * MeSH
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
Zobrazit více v PubMed
OPCW. [(accessed on 3 January 2020)]; Available online: www.opcw.org.
Organisation for the Prohibition of Chemical Weapons—OPCW. [(accessed on 3 January 2020)]; Available online: https://www.opcw.org/about-us/history.
Chemical Weapons Convention—CWC. [(accessed on 3 January 2020)]; Available online: https://www.opcw.org/chemical-weapons-convention.
Cavalcante S.F.A., Simas A.B.C., Kuča K. Nerve Agents’ Surrogates: Invaluable Tools for Development of Acetylcholinesterase Reactivators. Curr. Org. Chem. 2019;23:1539–1559. doi: 10.2174/1385272823666190806114017. DOI
Darling R.G., Noste R.E. In: Ciottone’s Disaster Medicine. Ciottone G.R., editor. Elsevier Science; Amsterdam, The Netherlands: 2016. pp. 489–498.
Nepovimova E., Kuča K. The history of poisoning: From ancient times until modern era. Arch. Toxicol. 2019;93:11–24. doi: 10.1007/s00204-018-2290-0. PubMed DOI
Vale A., Marrs T.C., Rice P. Chemical terrorism and nerve agents. Medicine. 2016;44:106–108. doi: 10.1016/j.mpmed.2015.11.004. DOI
Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus Compounds as Chemical Warfare Agents: A Review. J. Braz. Chem. Soc. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI
Greenfield R.A., Brown B.R., Hutchins J.B., Iandolo J.J., Jackson R., Slater L.N., Bronze M.S. Microbiological, biological, and chemical weapons of warfare and terrorism. Am. J. Med. Sci. 2002;323:326–340. doi: 10.1097/00000441-200206000-00005. PubMed DOI
Epstein J. Weapons of Mass Destruction: Is is all about Chemistry. J. Chem. Ed. 2009;86:1377–1381. doi: 10.1021/ed086p1377. DOI
Constanzi S., Machado J.H., Mitchell M. Nerve Agents: What They Are, How They Work, How to Counter Them. ACS Chem. Neurosci. 2018;9:873–885. doi: 10.1021/acschemneuro.8b00148. PubMed DOI
Tammelin L.E. Dialkoxy-phosphorylthiocholines, alkoxy-methyl-phosphorylthiocholines and analogous choline esters. Syntheses, pKa of tertiary homologues and cholinesterase inhibition. Acta Chem. Scand. 1957;11:1340–1349. doi: 10.3891/acta.chem.scand.11-1340. DOI
Tammelin L.E. Methyl-fluoro-phosphorylcholines. Two synthetic cholinergic drugs and their tertiary homologues. Acta Chem. Scand. 1957;11:859–865. doi: 10.3891/acta.chem.scand.11-0859. DOI
Makhaeva G.F., Filonenko I.V., Yankovskaya V.L., Fomicheva S.B., Malygin V.V. Comparative studies of O,O-dialkyl-O-chloromethylchloroformimino phosphates: Interaction with neuropathy target esterase and acetylcholinesterase. Neurotoxicology. 1998;19:623–628. PubMed
Rozengart E.V., Basova N.E., Moralev S.N., Lushchekina S.V., Masson P., Varfolomeev S.D. Research on cholinesterases in the Soviet Union and Russia: A historical perspective. Chem. Biol. Interact. 2013;203:3–9. doi: 10.1016/j.cbi.2013.02.002. PubMed DOI
Macilawain C. Study proves Iraq used nerve gas. Nature. 1993;363:3. doi: 10.1038/363003b0. PubMed DOI
BBC. [(accessed on 3 January 2020)]; Available online: http://news.bbc.co.uk/onthisday/hi/dates/stories/march/16/newsid_4304000/4304853.stm.
United Nations. [(accessed on 3 January 2020)]; Available online: http://www.sciencediplomacy.org/perspective/2015/intersection-science-and-chemical-disarmament.
Yanagisawa N. The nerve agent sarin: History, clinical manifestations, and treatment. Brain Nerve. 2014;66:561–569. PubMed
Yanagisawa N., Morita H., Nakajima T. Sarin Experiences in Japan: Acute Toxicity and Long-term Effects. J. Neurol. Sci. 2006;249:76–85. doi: 10.1016/j.jns.2006.06.007. PubMed DOI
Nagao M., Takatori T., Matsuda Y., Nakajima M., Iwase H., Iwadate K. Definitive for Evidence for the Acute Sarin Poisoning Diagnosis in Tokyo Subway. Toxicol. Appl. Pharm. 1997;144:198–203. doi: 10.1006/taap.1997.8110. PubMed DOI
Greaves I., Hunt P. Responding to Terrorism: A Medical Handbook. Churchill Livingstone; London, UK: 2011.
Evison D., Hinsley D., Rice P. Chemical Weapons. BMJ. 2002;324:332–335. doi: 10.1136/bmj.324.7333.332. PubMed DOI PMC
Riddle J.R., Brown M., Smith T., Ritchie E.C., Brix K.A., Romano J. Chemical warfare and the Gulf War: A review of the impact on Gulf Veteran’s health. Mil. Med. 2003;168:606–613. doi: 10.1093/milmed/168.8.606. PubMed DOI
Gooch E.E. Chemistry and Warfare: A general studies course. J. Chem. Ed. 2002;79:820–821. doi: 10.1021/ed079p820. DOI
Jang Y.J., Kim K., Tsay O.G., Atwood D.A., Churchill D.G. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2015;115:PR1–PR76. doi: 10.1021/acs.chemrev.5b00402. PubMed DOI
Organisation for the Prohibition of Chemical Weapons—OPCW. [(accessed on 3 March 2020)]; Available online: https://www.opcw.org/sites/default/files/documents/EC/87/en/ec87nat14_e_.pdf.
Arms Control Association ChemicalWeapons: Frequently Asked Questions. [(accessed on 6 March 2020)]; Available online: https://www.armscontrol.org/factsheets/Chemical-Weapons-Frequently-Asked-Questions.
Nozaki H., Aikawa N., Fujishima S., Suzuki M., Shinozawa Y., Hori S., Nogawa W. A case of VX poisoning and the difference from sarin. Lancet. 1995;346:698–699. doi: 10.1016/S0140-6736(95)92306-3. PubMed DOI
Raveh L., Eisenkraft A., Weissman B.A. Caramiphen edisylate: An optimal antidote against organophosphate poisoning. Toxicology. 2014;325:115–124. doi: 10.1016/j.tox.2014.09.005. PubMed DOI
Dolgin E. Syrian gas attack reinforces need for better anti-sarin drugs. Nat. Med. 2013;19:1194–1195. doi: 10.1038/nm1013-1194. PubMed DOI
Kaiser J. As Syria Crisis Mounts, Scientist Looks Back at Last Major Chemical Attack. Science. 2013;341:1051. doi: 10.1126/science.341.6150.1051. PubMed DOI
Patrick K., Stanbrook M., Flegel K. Lest We Forget: Why the Use of Chemical Weapons Must not Go Unchallenged. Can. Med. Assoc. J. 2013;185:1299. doi: 10.1503/cmaj.131359. PubMed DOI PMC
Science Mag. [(accessed on 3 January 2020)]; Available online: https://www.sciencemag.org/news/2013/08/syria-crisis-mounts-scientist-looks-back-25-years-after-investigating-halabja-gas.
Enserink M.U.N. Taps Special Labs to Investigate Syrian Attack. Science. 2013;341:1050–1051. doi: 10.1126/science.341.6150.1050. PubMed DOI
Vogel L. WHO releases guidelines for treating chemical warfare victims after possible Syria attacks. Can. Med. Assoc. J. 2013;185:E665. doi: 10.1503/cmaj.109-4592. PubMed DOI PMC
Gulland A. Lack of atropine in Syria hampers treatment after gas attacks. BMJ. 2013;347:f5413. doi: 10.1136/bmj.f5413. PubMed DOI
Asai Y., Arnold J.L. Terrorism in Japan. Prehospital Disaster Med. 2003;18:106. doi: 10.1017/S1049023X00000844. PubMed DOI
OPCW. [(accessed on 3 January 2020)]; Available online: https://www.opcw.org/news/article/statement-from-opcw-spokesperson-in-response-to-media-queries-regarding-alleged-use-of-nerve-agent-vx-in-malaysia/
Sputnik News. [(accessed on 3 January 2020)]; Available online: https://sputniknews.com/asia/201703031051219306-opcw-kim-jong-nam-probe/
Channels New Asia. [(accessed on 3 January 2020)]; Available online: http://www.channelnewsasia.com/news/asiapacific/malaysia-to-fully-cooperate-with-opcw-on-vx-probe-ministry/3564532.html.
Yle Uutiset. [(accessed on 3 January 2020)]; Available online: http://yle.fi/uutiset/3-9503798.
BBC. [(accessed on 3 January 2020)]; Available online: http://www.bbc.com/news/world-europe-43835774.
Organisation for the Prohibition of Chemical Weapons—OPCW SAB Director-General’s Request to the Scientific Advisory Board to Provide Advice on New Types of Nerve Agents. [(accessed on 3 March 2020)];2018 May 2; Available online: https://www.opcw.org/sites/default/files/documents/S_series/2018/en/s-1621-2018_e_pdf.
Nepovimova E., Kuča K. Chemical warfare agent NOVICHOK—Mini-review of available data. Food Chem. Toxicol. 2018;121:343–350. doi: 10.1016/j.fct.2018.09.015. PubMed DOI
França T.C.C., Kitagawa D.A.S., Cavalcante S.F.A., da Silva J.A.V., Nepovimova E., Kuča K. Novichoks: The Dangerous Forth Generation of Chemical Weapons. Int. J. Mol. Sci. 2019;20:1222. doi: 10.3390/ijms20051222. PubMed DOI PMC
US Department of Commerce—Bureau of Industry and Security Impact of Proposed Additions to the ‘‘Annex on Chemicals’’ to the Chemical Weapons Convention (CWC) on Legitimate Commercial Chemical, Biotechnology, and Pharmaceutical Activities Involving ‘‘Schedule 1′’ Chemicals (Including Schedule 1 Chemicals Produced as Intermediates) [(accessed on 3 January 2020)]; Available online: https://www.cwc.gov/84%20FR%2040389%20I%20NOI%20on%20Schedule%201%20Novichoks%20-%20Impact%20proposed%20CWC%20additions%208-14-19.pdf.
Organisation for the Prohibition of Chemical Weapons—OPCW Note by the Technical Secretariat: Consolidated Text of Adopted Changes to Schedule 1 of the Annex on Chemicals to the Chemical Weapons Convention. [(accessed on 3 January 2020)]; Available online: https://www.opcw.org/sites/default/files/documents/2019/12/s-1820-2019%28e%29.pdf.
Sommer H.Z., Wicks G.E., Jr. Chemical Agents. 4241212. U.S. Patent. 1980 Dec 23;
Ellison H.D. Handbook of Chemical and Biological Warfare Agents. CRC Press; Boca Raton, FL, USA: 2008.
Tucker J. War of Nerves: Chemical Warfare from World War I to Al-Qaeda. Anchor; New York, NY, USA: 2007.
Schwenk M. Chemical warfare agents. Classes and targets. Toxicol. Lett. 2017;293:253–263. doi: 10.1016/j.toxlet.2017.11.040. PubMed DOI
Soltaninejad K., Shadnia S. In: Basic and Clinical Toxicology of Organophosphorus Compounds. Balali-Mood M., Abdollahi M., editors. Springer; London, UK: 2014.
Moyer R.A., Sidell F.R., Salem H. In: Encyclopedia of Toxicology. Wexler P., editor. Elsevier Science; Amsterdam, The Netherlands: 2014. pp. 483–488.
Talabani J.M., Ali A.I., Kadir A.M., Rashid R., Samin F., Greenwood D., Hay A.W.M. Long-term health effects of chemical warfare agents on children following a single heavy exposure. Hum. Exp. Toxicol. 2018;37:836–847. doi: 10.1177/0960327117734620. PubMed DOI
Worek F., Wille T., Koller M., Thiermann H. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch. Toxicol. 2016;90:2131–2145. doi: 10.1007/s00204-016-1772-1. PubMed DOI
Chowdhary S., Bhattacharyya R., Banerjee D. Acute organophosphorus poisoning. Clin. Chim. Acta. 2014;431:66–76. doi: 10.1016/j.cca.2014.01.024. PubMed DOI
Quinn D.M. Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, and Virtual Transition States. Chem. Rev. 1987;87:955–979. doi: 10.1021/cr00081a005. DOI
Chatonnet A., Lockridge O. Comparison of Butyrylcholinestarse and Acetylcholinesterase. Biochem. J. 1989;260:625–634. doi: 10.1042/bj2600625. PubMed DOI PMC
Saxena A., Redman A.M.G., Jiang X., Lockridge O., Doctor B.P. Differences in Active Site Gorge Dimensions of Cholinesterases Revealed by Binding of Inhibitors to Human Butyrylcholinesterase. Chem. Biol. Interact. 1999;119–120:61–69. doi: 10.1016/S0009-2797(99)00014-9. PubMed DOI
Taylor P. The Cholinesterases. J. Biol. Chem. 1991;266:4025–4028. PubMed
Taylor P., Radić Z. The Cholinesterases: From Genes to Proteins. Annu. Rev. Pharmacol. Toxicol. 1994;34:281–320. doi: 10.1146/annurev.pa.34.040194.001433. PubMed DOI
Sussman J.L., Silman I. Acetylcholinesterase: Structure and use as a model for specific cation-protein interactions. Curr. Opin. Struct. Biol. 1992;2:721–729. doi: 10.1016/0959-440X(92)90207-N. DOI
Soreq H., Seidman S. Acetylcholinesterase—New Roles for an Old Actor. Nat. Rev. 2001;2:294–302. doi: 10.1038/35067589. PubMed DOI
Silman I., Sussman J.L. Acetylcholinesterase: “Classical” and “Non-classical” Functions and Pharmacology. Curr. Opin. Pharmacol. 2005;5:293–302. doi: 10.1016/j.coph.2005.01.014. PubMed DOI
Dvir H., Silman I., Harel M., Rosenberry T.L., Sussman J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 2010;187:10–22. doi: 10.1016/j.cbi.2010.01.042. PubMed DOI PMC
Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther. 2015;148:34–46. doi: 10.1016/j.pharmthera.2014.11.011. PubMed DOI
Nobel Prize Foundation. [(accessed on 3 March 2020)]; Available online: http://www.nobelprize.org/nobel_prizes/peace/laureates/2013/opcw-facts.html.
Black R.M., Harrison J.M. In: The Chemistry of Organophosphorus Compounds, Vol 4, Ter- and Quinquephosphorus Acids and Their Derivatives. Hartley F.R., editor. John Wiley & Sons; Chichester, UK: 1996. pp. 781–840.
Mundy J.L., Harrison J.M., Watts P., Timperley C.M. Isotopically labelled phosphorus compounds: Some deuterated methyl and ethyl derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2006;181:1847–1857. doi: 10.1080/10426500500543008. DOI
Timperley C.M. Best Synthetic Methods. 1st ed. Chemistry Academic Press; Massachusetts, MA, USA: 2014. Organophosphorus (V)
Ledgard J. The Preparatory Manual of Chemical Warfare Agents. 3rd ed. UVKCHEM; Puyallup, UK: 2006.
Tajti Á., Keglevich G. The importance of organophosphorus compounds as biologically active agents. In: Keglevich G., editor. Organophosphorus Chemistry—Novel Developments. De Gruyter; Berlin, Germany: Boston, MA, USA: 2018. pp. 53–65. Chapter 3.
Mattes C.E., Lynch T.J., Singh A., Bradley R.M., Kellaris P.A., Brady R.O., Dretchen K.L. Therapeutic use of butyrylcholinesterase for cocaine intoxication. Toxicol. Appl. Pharmacol. 1997;145:372–380. doi: 10.1006/taap.1997.8188. PubMed DOI
Carmona G.N., Jufer R.A., Goldberg S.R., Gorelick D.A., Greig N.H., Yu Q.S., Cone E.J., Schindler C.W. Butyrylcholinesterase accelerates cocaine metabolism: In vitro and in vivo effects in nonhuman primates and humans. Drug Metab. Dispos. 2000;28:367–371. PubMed
Brimijoin S., Gao Y., Geng L., Chen V.P. Treating Cocaine Addiction, Obesity, and Emotional Disorders by Viral Gene Transfer of Butyrylcholinesterase. Front. Pharmacol. 2018;9:1–6. doi: 10.3389/fphar.2018.00112. PubMed DOI PMC
Murthy V., Brimijoin S. Cocaine and Butyrylcholinesterase Gene Therapy. In: Preedy V.R., editor. The Neuroscience of Cocaine—Mechanisms and Treatment. Academic Press; Cambridge, MA, USA: 2017. pp. 673–678. Chapter 68.
Masson P., Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: Catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys. 2010;494:107–120. doi: 10.1016/j.abb.2009.12.005. PubMed DOI PMC
Zhang P., Jain P., Tsao C., Sinclair A., Sun F., Hung H.-C., Bai T., Wu K., Jiang S. Butyrylcholinesterase nanocapsule as a long circulating bioscavenger with reduced immune response. J. Control. Release. 2016;230:73–78. doi: 10.1016/j.jconrel.2016.04.008. PubMed DOI
Rice H., Mann T.M., Armstrong S.J., Price M.E., Green A.C., Tattersall J.E.H. The potential role of bioscavenger in the medical management of nerve-agent poisoned casualties. Chem. Biol. Interact. 2016;259:175–181. doi: 10.1016/j.cbi.2016.04.038. PubMed DOI
Lushchekina S.V., Schopfer L.M., Grigorenko B.L., Nemukhin A.V., Varfolomeev S.D., Lockridge O., Masson P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front. Pharmacol. 2018;9:1–13. doi: 10.3389/fphar.2018.00211. PubMed DOI PMC
Nachon F., Brazzolotto X., Trovaslet M., Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem. Biol. Interact. 2013;206:536–544. doi: 10.1016/j.cbi.2013.06.012. PubMed DOI
Cerasoli D.M., Griffiths E.M., Doctor B.P., Saxena A., Fedorko J.M., Greig N.H., Yu Q.S., Huang Y., Wilgus H., Karatzas C.N., et al. In vitro and in vivo characterization of recombinant human butyrylcholinesterase (Protexia) as a potential nerve agent bioscavenger. Chem. Biol. Interact. 2005;157–158:363–365. doi: 10.1016/j.cbi.2005.10.052. PubMed DOI
Musilek K., Holas O., Horova A., Pohanka M., Zdarova-Karasova J., Jun D., Kuca K. In: Pesticides in the Modern World—Effects of Pesticides Exposure. Stoytcheva M., editor. InTech; London, UK: 2011. [(accessed on 3 March 2020)]. Available online: http://www.intechopen.com/books/pesticides-in-the-modern-worldeffects-of-pesticides-exposure/progress-in-antidotes-acetylcholinesterase-reactivators-againstorganophosphorus-pesticides.
Thomas E.A., Bornstein J.C. Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission. Neuroscience. 2003;120:333–351. doi: 10.1016/S0306-4522(03)00039-3. PubMed DOI
Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D., et al. Mutagenesis of Human Acetylcholinesterase. J. Biol. Chem. 1992;25:17640–17648. PubMed
Lockridge O. Structure of human serum cholinesterase. Bioessays. 1988;9:125–128. doi: 10.1002/bies.950090406. PubMed DOI
Vellom D.C., Radic Z., Li Y., Pickering N.A., Camp S., Taylor P. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993;32:12–17. doi: 10.1021/bi00052a003. PubMed DOI
Hörnberg A., Tunemalm A.K., Ekström F. Crystal structures of acetylcholinesterase in complex with organophosphorus compounds suggest that the acyl pocket modulates the aging reaction by precluding the formation of the trigonal bipyramidal transition state. Biochemistry. 2007;46:4815–4825. doi: 10.1021/bi0621361. PubMed DOI
Bartling A., Worek F., Szinicz L., Thiermann H. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Toxicology. 2007;233:166–172. doi: 10.1016/j.tox.2006.07.003. PubMed DOI
Nicolet Y., Lockridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. Biol. Chem. 2003;278:41141–41147. doi: 10.1074/jbc.M210241200. PubMed DOI
Bencsura A., Enyedy I.Y., Kovach I.M. Probing the Active Site of Acetylcholinesterase by Molecular Dynamics of Its Phosphonate Ester Adducts. J. Am. Chem. Soc. 1996;118:8531–8541. doi: 10.1021/ja952406v. DOI
Ballard C., Gauthier S., Corbett A., Brayne C., Aarsland D., Jones E. Alzheimer’s disease. Lancet. 2011;377:1019–1031. doi: 10.1016/S0140-6736(10)61349-9. PubMed DOI
Okumura T., Seto Y., Fuse A. Countermeasures against chemical terrorism in Japan. Forensic Sci. Int. 2013;227:2–6. doi: 10.1016/j.forsciint.2012.11.008. PubMed DOI
Tu A.T. Aum Shinrikyo’s chemical and biological weapons: More than sarin. Forensic Sci. Rev. 2014;26:115–120. PubMed
Hardacre H. Aum Shinrikyo and the Japanese Media. [(accessed on 3 March 2020)];1996 JPRI Working Paper No. 19. Available online: http://www.jpri.org/publications/workingpapers/wp19.html.
Hroudová J., Singh N., Fišar Z., Ghosh K.K. Progress in drug development for Alzheimer’s disease: An overview in relation to mitochondrial energy metabolism. Eur. J. Med. Chem. 2016;121:774–784. doi: 10.1016/j.ejmech.2016.03.084. PubMed DOI
Seto Y. The Sarin Gas Attack in Japan and the Related Forensic Investigation. [(accessed on 20 January 2020)];OPCW Synth. 2001 June:14–17. Available online: https://www.opcw.org/news/article/the-sarin-gas-attack-in-japan-and-the-related-forensic-investigation.
Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuča K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI
Pohanka M. Cholinesterases, a target of Pharmacology and Toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011;155:219–230. doi: 10.5507/bp.2011.036. PubMed DOI
Pohanka M. Acetylcholinesterase inhibitors: A patent review (2008–present) Expert Opin. Ther. Pat. 2012:1–16. doi: 10.1517/13543776.2012.701620. PubMed DOI
Franjesevic A.J., Sillart S.B., Beck J.M., Vyas S., Callam C.S., Hadad C.M. Ressurrectionand reactivation of acetylcholinesterase and butyrylcholinesterase. Chem. Eur. J. 2019;25:5337–5371. doi: 10.1002/chem.201805075. PubMed DOI PMC
Tõugu V. Acetylcholinesterase: Mechanism of Catalysis and Inhibition. Curr. Med. Chem. 2001;1:155–170. doi: 10.2174/1568015013358536. DOI
Greenfield S., Vaux D.J. Parkinson’s disease, Alzheimer’s disease and motor neurone disease: Identifying a common mechanism. Neuroscience. 2002;113:485–492. doi: 10.1016/S0306-4522(02)00194-X. PubMed DOI
Brinton R.D., Yamazaki R.S. Advances and Challenges in the Prevention and Treatment of Alzheimer’s Disease. Pharm. Res. 1998;15:386–398. doi: 10.1023/A:1011963929012. PubMed DOI
Butterfield D.A., Lauderback C.M. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 2002;32:1050–1060. doi: 10.1016/S0891-5849(02)00794-3. PubMed DOI
Blennow K., de Leon M.J., Zetterberg K. Alzheimer’s disease. Lancet. 2006;368:387–403. doi: 10.1016/S0140-6736(06)69113-7. PubMed DOI
Scarpinia E., Schelternsa P., Feldman H. Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol. 2003;2:539–547. doi: 10.1016/S1474-4422(03)00502-7. PubMed DOI
Rösler M., Anand R., Cicin-Sain A., Gauthier S., Agid Y., Dal-Bianco P., Stähelin H.B., Hartman R., Gharabawi M. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: International randomised controlled trial. BMJ. 1999;318:633–638. doi: 10.1136/bmj.318.7184.633. PubMed DOI PMC
Fifer E.K. Drugs affecting cholinergic neurotransmission. In: Lemke T.L., Williams D.A., editors. Foye’s Medicinal Chemistry. 6th ed. Lippincott Williams & Wilkins, Baltimore; Philadelphia, PA, USA: 2008. pp. 361–391. Chapter 12.
Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci. 2014;15:9809–9825. doi: 10.3390/ijms15069809. PubMed DOI PMC
Glenner G.G., Wong C.W. Alzheimer’s Disease: Initial Report Of The Purification And Characterization Of A Novel Cerebrovascular Amyloid Protein. Biochem. Biophys. Res. Commun. 1984;120:885–890. doi: 10.1016/S0006-291X(84)80190-4. PubMed DOI
Kihara T., Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol. Exp. 2004;64:99–105. PubMed
Scott L.J., Goa K.L. Galantamine: A review of its use in Alzheimer’s disease. Drugs. 2000;60:1095–1122. doi: 10.2165/00003495-200060050-00008. PubMed DOI
Woodruff-Pak D.S., Vogel R.W., Wenk G.L. Galantamine: Effect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning. Proc. Natl. Acad. Sci. USA. 2001;98:2089–2094. doi: 10.1073/pnas.98.4.2089. PubMed DOI PMC
Albuquerque E.X., Pereira E.F.R., Aracava Y., Fawcett W.P., Oliveira M., Randall W.R., Adler M. Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents. Proc. Natl. Acad. Sci. USA. 2006;103:13220–13225. doi: 10.1073/pnas.0605370103. PubMed DOI PMC
Xia P., Chen H.S., Zhang D., Lipton S.A. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci. 2010;30:11246–11250. doi: 10.1523/JNEUROSCI.2488-10.2010. PubMed DOI PMC
Robinson D.M., Keating G.M. Memantine: A review of its use in Alzheimer’s disease. Drugs. 2006;66:1515–1534. doi: 10.2165/00003495-200666110-00015. PubMed DOI
Jann M.W. Rivastigmine, a New-Generation Cholinesterase Inhibitor for the Treatment of Alzheimer’s Disease. Pharmacotherapy. 2000;20:1–12. doi: 10.1592/phco.20.1.1.34664. PubMed DOI
Khoury R., Rajamanickam J., Grossberg G.T. An update on the safety of current therapies for Alzheimer’s disease: Focus on rivastigmine. Ther. Adv. Drug Saf. 2018;9:171–178. doi: 10.1177/2042098617750555. PubMed DOI PMC
Sun X., Jin L., Ling P. Review of drugs for Alzheimer’s disease. Drug Discov. Ther. 2012;6:285–290. doi: 10.5582/ddt.2012.v6.6.285. PubMed DOI
Lao K., Ji N., Zhang X., Qiao W., Tang Z., Gou X. Drug development for Alzheimer’s disease: Review. J. Drug Target. 2019;27:164–173. doi: 10.1080/1061186X.2018.1474361. PubMed DOI
Hung S.Y., Fu W.M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci. 2017;24:47–58. doi: 10.1186/s12929-017-0355-7. PubMed DOI PMC
Cummings J., Lee G., Ritter A., Sabbagh M., Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 2019;5:272–293. doi: 10.1016/j.trci.2019.05.008. PubMed DOI PMC
Cazarim M.S., Moriguti J.C., Ogunjimi A.T., Pereira L.R.L. Perspectives for treating Alzheimer’s disease: A review on promising pharmacological substances. Sao Paulo Med. J. 2016;134:342–354. doi: 10.1590/1516-3180.2015.01980112. PubMed DOI PMC
Galimberti D., Ghezzi L., Scarpini E. Immunotherapy against amyloid pathology in Alzheimer’s disease. J. Neurol. Sci. 2013;333:50–54. doi: 10.1016/j.jns.2012.12.013. PubMed DOI
Skaper S.D. Alzheimer’s disease and amyloid: Culprit or coincidence? Int. Rev. Neurobiol. 2012;102:277–316. PubMed
Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi: 10.1126/science.1072994. PubMed DOI
Ningthoujam D.S., Mukherjee S., Devi L.J., Singh E.S., Tamreihao K., Khunjamayum R., Banerjee S., Mukhopadhyay D. In vitro degradation of β-amyloid fibrils by microbial keratinase. Alzheimers Dement. 2019;5:154–163. doi: 10.1016/j.trci.2019.03.003. PubMed DOI PMC
Guzior N., Bajda M., Skrok M., Kurpiewsk K., Lewiński K., Brus B., Pišlar A., Kos J., Gobec S., Malawska B. Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties. Eur. J. Med. Chem. 2015;92:738–749. doi: 10.1016/j.ejmech.2015.01.027. PubMed DOI
Johnson G., Moore S.W. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Curr. Pharm. Des. 2006;12:217–225. doi: 10.2174/138161206775193127. PubMed DOI
Inestrosa N.C., Alvarez A., Pérez C.A., Moreno R.D., Vicente M., Linker C., Casanueva O.I., Soto C., Garrido J. Acetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer’s Fibrils: Possible Role of the Peripheral Site of the Enzyme. Neuron. 1996;16:881–891. doi: 10.1016/S0896-6273(00)80108-7. PubMed DOI
Das B., Yan R. Role of BACE1 in Alzheimer’s synaptic function. Transl. Neurodegener. 2017;6:1–8. doi: 10.1186/s40035-017-0093-5. PubMed DOI PMC
Coimbra J.R.M., Marques D.F.F., Baptista S.J., Pereira C.M.F., Moreira P.I., Dinis T.C.P., Santos A.E., Salvador J.A.R. Highlights in BACE1 Inhibitors for Alzheimer’s Disease Treatment. Front. Chem. 2018;6:1–10. doi: 10.3389/fchem.2018.00178. PubMed DOI PMC
Das B., Yan R. A Close Look at BACE1 Inhibitors for Alzheimer’s Disease Treatment. CNS Drugs. 2019;33:251–263. doi: 10.1007/s40263-019-00613-7. PubMed DOI PMC
Deng Y., Wang Z., Wang R., Zhang X., Zhang S., Wu Y., Staufenbiel M., Cai F., Song W. Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1 (BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. Eur. J. Neurosci. 2013;37:1962–1969. doi: 10.1111/ejn.12235. PubMed DOI
Vassar R. BACE1: The beta-secretase enzyme in Alzheimer’s disease. J. Mol. Neurosci. 2004;23:105–114. doi: 10.1385/JMN:23:1-2:105. PubMed DOI
Cole S.L., Vassar R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol. Neurodegener. 2007;2:1–25. doi: 10.1186/1750-1326-2-22. PubMed DOI PMC
Egan M.F., Kost J., Voss T., Mukai Y., Aisen P.S., Cummings J.L., Tariot P.N., Vellas B., van Dyck C.H., Boada M., et al. Randomized Trial of Verubecestat for Prodromal Alzheimer’s Disease. N. Engl. J. Med. 2019;380:1408–1420. doi: 10.1056/NEJMoa1812840. PubMed DOI PMC
Doggrell S.A. Lessons that can be learnt from the failure of verubecestat in Alzheimer’s disease. Expert Opin. Pharmacother. 2019;20:2095–2099. doi: 10.1080/14656566.2019.1654998. PubMed DOI
Mdawar B., Ghossoub E., Khoury R. Selective serotonin reuptake inhibitors and Alzheimer’s disease. Neural Regen. Res. 2020;15:41–46. PubMed PMC
Elsworthy R.J., Aldred S. Depression in Alzheimer’s Disease: An Alternative Role for Selective Serotonin Reuptake Inhibitors? J. Alzheimers Dis. 2019;69:651–661. doi: 10.3233/JAD-180780. PubMed DOI
Sepehry A.A., Lee P.E., Hsiung G.Y., Beattie B.L., Jacova C. Effect of selective serotonin reuptake inhibitors in Alzheimer’s disease with comorbid depression: A meta-analysis of depression and cognitive outcomes. Drugs Aging. 2012;29:793–806. doi: 10.1007/s40266-012-0012-5. PubMed DOI
Xie Y., Liu P.P., Lian Y.J., Liu H.B., Kang J.S. The effect of selective serotonin reuptake inhibitors on cognitive function in patients with Alzheimer’s disease and vascular dementia: Focusing on fluoxetine with long follow-up periods. Signal Transduct. Target. Ther. 2019;4:30–32. doi: 10.1038/s41392-019-0064-7. PubMed DOI PMC
Kargbo R.B. Treatment of Alzheimer’s by PROTAC-Tau Protein Degradation. ACS Med. Chem. Lett. 2019;10:699–700. doi: 10.1021/acsmedchemlett.9b00083. PubMed DOI PMC
Konstantinidou M., Li J., Zhang B., Wang Z., Shaabani S., Ter Brake F., Essa K., Dömling A. PROTACs- a game-changing technology. Expert Opin. Drug Discov. 2019;14:1255–1268. doi: 10.1080/17460441.2019.1659242. PubMed DOI PMC
Kumar V. Potential medicinal plants for CNS disorders: An overview. Phytother. Res. 2006;20:1023–1035. doi: 10.1002/ptr.1970. PubMed DOI
White R.F., Steele L., O’Callaghan J.P., Sullivan K., Binns J.H., Golomb B.A., Bloom F.E., Bunker J.A., Crawford F., Graves J.C. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex. 2016;74:449–475. doi: 10.1016/j.cortex.2015.08.022. PubMed DOI PMC
Macht V.A., Woodruff J.L., Grillo C.A., Wood C.S., Wilson M.A., Reagan L.P. Pathophysiology in a model of Gulf War Illness: Contributions of pyridostigmine bromide and stress. Psychoneuroendocrinology. 2018;96:195–202. doi: 10.1016/j.psyneuen.2018.07.015. PubMed DOI
Shen Z.-X. Pyridostigmine bromide and Gulf War syndrome. Med. Hypotheses. 1998;51:235–237. doi: 10.1016/S0306-9877(98)90081-0. PubMed DOI
Wagner M.J., Promes S., editors. Last Minute Emergency Medicine: A Concise Review for the Specialty Boards. McGraw-Hill Medical; New York, NY, USA: 2007.
Wright L.K.M., Lee R.B., Vincelli N.M., Whalley C.E., Lumley L.A. Female rats are less susceptible during puberty to the lethal effects of percutaneous exposure to VX. Toxicol. Lett. 2016;241:167–174. doi: 10.1016/j.toxlet.2015.11.023. PubMed DOI
Zhuang Q., Young A., Callam C.S., McElroy C.A., Ekici O.D., Yoder R.J., Hadad C.M. Efforts towards treatment against aging organophosphorus-inhibited acetylcholinesterase. Ann. N. Y. Acad. Sci. 2016;1374:94–104. doi: 10.1111/nyas.13124. PubMed DOI PMC
Cavalcante S.F.A., Kitagawa D.A.S., Rodrigues R.B., Bernardo L.B., da Silva T.N., dos Santos W.V., Correa A.B.A., de Almeida J.S.F.D., França T.C.C., Kuča K., et al. Synthesis and in vitro evaluation of neutral aryloximes as reactivators of Electrophorus eel acetylcholinesterase inhibited by NEMP, a VX surrogate. Chem. Biol. Interact. 2019 doi: 10.1016/j.cbi.2019.05.048. PubMed DOI
Kitagawa D.A.S., Cavalcante S.F.A., de Paula R.L., Rodrigues R.B., Bernardo L.B., da Silva M.C.J., da Silva T.N., dos Santos W.V., Granjeiro J.M., de Almeida J.S.F.D., et al. In Vitro Evaluation of Neutral Aryloximes as Reactivators for Electrophorus eel Acetylcholinesterase Inhibited by Paraoxon. Biomolecules. 2019;9:583. doi: 10.3390/biom9100583. PubMed DOI PMC
Benson S.W. Bond Energies. J. Chem. Ed. 1965;42:502–518. doi: 10.1021/ed042p502. DOI
Reuters. [(accessed on 3 January 2020)]; Available online: www.reuters.com/article/india-children-idUSL4N0FO18520130718.
BBC. [(accessed on 3 January 2020)]; Available online: http://www.bbc.com/news/world-asia-23390972.
Stokstad E. Pesticides Under Fire for Risks to Pollinators. Science. 2013;340:674–676. doi: 10.1126/science.340.6133.674. PubMed DOI
Tomizawa M., Casida J.E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 2005;45:24–268. doi: 10.1146/annurev.pharmtox.45.120403.095930. PubMed DOI
Milatovic D., Jokanovic M. Pyridinium Oximes as Cholinesterase Reactivators in the Treatment of OP Poisoning. In: Gupta R.C., editor. Handbook of Toxicology of Chemical Warfare Agents. Elsevier; Amsterdam, Netherlands: 2009. pp. 985–994. Chapter 65.
Kuča K., Musilek K., Jun D., Bajgar J., Kassa J. Novel Oximes. In: Gupta R.C., editor. Elsevier Handbook of Toxicology of Chemical Warfare Agents. Elsevier; Amsterdam, The Netherlands: 2009. pp. 997–1021. Chapter 66.
Worek F., Thiermann H., Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem. Biol. Interact. 2016;259:93–98. doi: 10.1016/j.cbi.2016.04.032. PubMed DOI
Ribeiro T.S., Prates A., Alves S.R., Oliveira-Silva J.J., Riehl C.A.S., Figueroa-Villar J.D. The Effect of Neutral Oximes on the Reactivation of Human Acetylcholinesterase Inhibited with Paraoxon. J. Braz. Chem. Soc. 2012;23:1216–1225. doi: 10.1590/S0103-50532012000700004. DOI
Mumford H., Docx C.J., Price M.E., Green A.C., Tattersall J.E.H., Armstrong S.J. Human plasma-derived BuChE as a stoichiometric bioscavenger for treatment of nerve agent poisoning. Chem. Biol. Interact. 2013;203:160–166. doi: 10.1016/j.cbi.2012.08.018. PubMed DOI
Ilyushin D.G., Smirnov I.V., Belogurov A.A., Jr., Dyachenko I.A., Zharmukhamedova T.I., Novozhilova T.I., Bychikhin E.A., Serebryakova M.V., Kharybin O.N., Murashev A.N., et al. Chemical polysialylation of human recombinant butyrylcholinesterase delivers a long-acting bioscavenger for nerve agents in vivo. Proc. Natl. Acad. Sci. USA. 2013;110:1243–1248. doi: 10.1073/pnas.1211118110. PubMed DOI PMC
Valiyaveettil M., Alamneh Y., Rezk P., Biggemann L., Perkins M.W., Scieuto A.M., Doctor B.P., Nambiar M.P. Protective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs. Biochem. Pharmacol. 2011;81:800–809. doi: 10.1016/j.bcp.2010.12.024. PubMed DOI
Trovaslet-Leroy M., Musilova L., Renault F., Brazzolotto X., Misik J., Novotny L., Froment M.T., Gillon E., Loiodice M., Verdier L., et al. Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Toxicol Lett. 2011;206:14–23. doi: 10.1016/j.toxlet.2011.05.1041. PubMed DOI
Black R.M., Clarke R.J., Read R.W., Reid M.T.J. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J. Chromatogr. A. 1994;662:301–321. doi: 10.1016/0021-9673(94)80518-0. PubMed DOI
Lee J.Y., Lee Y.H. Liquid chromatography-tandem mass spectrometry determination of the degradation products of V-type nerve agents, N,N-dialkylaminoethanesulfonic acids. J. Anal. Chem. 2015;70:1001–1007. doi: 10.1134/S1061934815080110. DOI
Kientz C.E. Chromatography and mass spectrometry of chemical warfare agents, toxins and related compounds: State of the art and future prospects. J. Chromatogr. A. 1998;814:1–23. doi: 10.1016/S0021-9673(98)00338-0. PubMed DOI
Koller M., Becker C., Thiermann H., Worek F. GC-MS and LC-MS analysis of nerve agents in body fluids: Intra-laboratory verification test using spiked plasma and urine samples. J. Chromatogr. B. 2010;878:1226–1233. doi: 10.1016/j.jchromb.2009.12.023. PubMed DOI
Mesilaakso M., editor. Chemical Weapons Convention Chemicals Analysis: Sample Collection, Preparation and Analytical Methods. Wiley; Chichester, UK: 2015.
Vanninen P., editor. Recommended Operating Procedures for Analysis in the Verification of Chemical Disarmament. The Ministry of Foreign Affairs of Finland, University of Helsinki; Helsinki, Finland: 2011.
Black R.M., Muir B. Derivatisation reactions in the chromatographic analysis of chemical warfare agents and their degradation products. J. Chromatogr. A. 2003;1000:253–281. doi: 10.1016/S0021-9673(03)00183-3. PubMed DOI
Read M.W., Black R.M. Rapid screening procedures for the hydrolysis products of chemical warfare agents using positive and negative ion liquid chromatography-mass spectrometry with atmospheric pressure chemical ionisation. J. Chromatogr. A. 1999;862:169–177. doi: 10.1016/S0021-9673(99)00944-9. PubMed DOI
Driskell W.J., Shih M., Needham L.L., Barr D.B. Quantitation of organophosphorus nerve agent metabolites in human urine using isotope dilution gas chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2002;26:6–10. doi: 10.1093/jat/26.1.6. PubMed DOI
Sega G.A., Tomkins B.A., Griest W.H. Analysis of methylphosphonic acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid at low microgram per liter levels in groundwater. J. Chromatogr. A. 1997;790:143–152. doi: 10.1016/S0021-9673(97)00747-4. PubMed DOI
Noort D., Hulst A.G., Platenburg D.H.J.M., Polhuijs M., Benschop H.P. Quantitative analysis of O-isopropyl methylphosphonic acid in serum samples of Japanese citizens allegedly exposed to sarin: Estimation of internal dosage. Arch. Toxicol. 1998;72:671–675. doi: 10.1007/s002040050559. PubMed DOI
Noort D., Benschop H.P., Black R.M. Biomonitoring of exposure to chemical warfare agents: A review. Toxicol. Appl. Pharmacol. 2002;184:116–126. doi: 10.1006/taap.2002.9449. PubMed DOI
Mathews T.P., Carter M.D., Johnson D., Isenberg S.L., Graham L.A., Thomas J.D., Johnson R.C. High-Confidence Qualitative Identification of Organophosphorus Nerve Agent Adducts to Human Butyrylcholinesterase. Anal. Chem. 2017;89:1955–1964. doi: 10.1021/acs.analchem.6b04441. PubMed DOI PMC
Bielmann A., Curty C., Bochet C.G. Solid-Phase Synthesis of the Aged-Nonapeptide-Nerve-Agent Adduct of Butyrylcholinesterase as Reference Materials for Analytical Verification. Helv. Chim. Acta. 2019;100:e1700198. doi: 10.1002/hlca.201700198. DOI
Jokanovic M., Prostran M. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr. Med. Chem. 2009;16:2177–2188. doi: 10.2174/092986709788612729. PubMed DOI
Wilhelm C.M., Snider T.H., Babin M.C., Jett D.A., Platoff G.E., Jr., Yeung D.T. A comprehensive evaluation of the efficacy of leading oximes therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides. Toxicol. Appl. Pharmacol. 2014;281:254–265. doi: 10.1016/j.taap.2014.10.009. PubMed DOI PMC
Marrs T.C., Rice P., Vale J.A. The role of oximes in the treatment of nerve agent poisoning in civilian casualties. Toxicol. Rev. 2006;25:297–323. doi: 10.2165/00139709-200625040-00009. PubMed DOI
Bajgar J., Fusek J., Kassa J., Kuča K., Jun D. Pharmacological Prophylaxis Against Nerve Agent Poisoning: Experimental Studies and Practical Implication. In: Gupta R.C., editor. Handbook of Toxicology of Chemical Warfare Agents. Elsevier; Amsterdam, The Netherlands: 2009. pp. 677–684. Chapter 64.
Cannard K.J. The acute treatment of nerve agent exposure. Neurol. Sci. 2006;249:86–94. doi: 10.1016/j.jns.2006.06.008. PubMed DOI
Yokoyama K. Our recent experiences with sarin poisoning cases in Japan and pesticide users with references to some selected chemicals. Neurotoxicology. 2007;28:364–373. doi: 10.1016/j.neuro.2006.04.006. PubMed DOI
Worek F., Wille T., Koller M., Thiermann H. Structural requirements for effective oximes—Evaluation of kinetic in vitro data with phosphylated human AChE and structurally different oximes. Chem. Biol. Interact. 2013;203:125–128. doi: 10.1016/j.cbi.2012.07.003. PubMed DOI
Kuča K., Jun D., Mušilek K. Structural Requirements of Acetylcholinesterase Reactivators. Mini Rev. Med. Chem. 2006;6:269–277. doi: 10.2174/138955706776073510. PubMed DOI
de Jong L.P.A., Verhagen M.A.A., Langenberg J.P., Hagedorn I., Löffler M. The bispyridinium-dioxime HLö-7: A potent reactivator for acetylcholinesterase inhibited by the stereoisomers of tabun and soman. Biochem. Pharmacol. 1989;38:633–640. doi: 10.1016/0006-2952(89)90209-8. PubMed DOI
Eyer P., Hagedorn I., Klimmek R., Lippstreu P., Löffler M., Oldiges H., Spöhrer U., Steidl I., Szinicz L., Worek F. HLö-7 dimethanesulfonate, a potent bispyridinium-dioxime against anticholinesterases. Arch. Toxicol. 1992;66:603–621. doi: 10.1007/BF01981499. PubMed DOI
Cabal J., Kuča K., Kassa J. Specification of the Structure of Oximes Able to Reactivate Tabun-Inhibited Acetylcholinesterase. Basic Clin. Pharmacol. Toxicol. 2004;95:81–86. doi: 10.1111/j.1742-7843.2004.950207.x. PubMed DOI
Jokanović M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: A review of recent data. Curr. Top. Med. Chem. 2012;12:1775–1789. doi: 10.2174/1568026611209061775. PubMed DOI
Aroniadou-Anderjaska V., Figueiredo T.H., Apland J.P., Prager E.M., Pidoplichko V.I., Miller S.L., Braga M.F.M. Countermeasures Against Chemical Threats Long-term neuropathological and behavioral impairments after exposure to nerve agents. Ann. N. Y. Acad. Sci. 2006;1374:17–28. doi: 10.1111/nyas.13028. PubMed DOI PMC
Aroniadou-Anderjaska V., Figueiredo T.H., Apland J.P., Qashu F., Braga M.F.M. Primary brain targets of nerve agents the role of the amygdala in comparison to the hippocampus. Neurotoxicology. 2009;30:772–776. doi: 10.1016/j.neuro.2009.06.011. PubMed DOI PMC
Moshiri M., Darchini-Maragheh E., Balali-Mood M. Advances in toxicology and medical treatment of chemical warfare nerve agents. DARU. 2012;20:1–24. doi: 10.1186/2008-2231-20-81. PubMed DOI PMC
Čolović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013;11:315–335. doi: 10.2174/1570159X11311030006. PubMed DOI PMC
Antonijevic B., Stojiljkovic M.P. Unequal Efficacy of Pyridinium Oximes in Acute Organophosphate Poisoning. Clin. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC
Wiener S.W., Hoffman R.S. Nerve Agents: A Comprehensive Review. J. Intensive Care Med. 2004;19:22–37. doi: 10.1177/0885066603258659. PubMed DOI
McDonough J.H., Van Shura K.E., LaMont J.C., McMonagle J.D., Shih T.-M. Comparison of the Intramuscular, Intranasal or Sublingual Routes of Midazolam Administration for the Control of Soman-Induced Seizures. Basic Clin. Pharmacol. Toxicol. 2009;104:27–34. doi: 10.1111/j.1742-7843.2008.00326.x. PubMed DOI
Reddy S.D., Reddy D.S. Midazolam as an anticonvulsant antidote for organophosphate intoxication—A pharmacotherapeutic appraisal. Epilepsia. 2015;56:813–821. doi: 10.1111/epi.12989. PubMed DOI PMC
Kapoora M., Cloyd J.C., Siegelad R.A. A review of intranasal formulations for the treatment of seizure emergencies. J. Control. Release. 2016;237:147–159. doi: 10.1016/j.jconrel.2016.07.001. PubMed DOI
Candiotti K. A primer on nerve agents: What the emergency responder, anesthesiologist, and intensivist needs to know. Can. J. Anesth. 2017;64:1059–1070. doi: 10.1007/s12630-017-0920-2. PubMed DOI
Benfield J., Musto A. Intranasal Therapy to Stop Status Epilepticus in Prehospital Settings. Drugs R D. 2018;18:7–17. doi: 10.1007/s40268-017-0219-3. PubMed DOI PMC