The impact of tunnel mutations on enzymatic catalysis depends on the tunnel-substrate complementarity and the rate-limiting step

. 2020 ; 18 () : 805-813. [epub] 20200325

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32308927
Odkazy

PubMed 32308927
PubMed Central PMC7152659
DOI 10.1016/j.csbj.2020.03.017
PII: S2001-0370(19)30559-8
Knihovny.cz E-zdroje

Transport of ligands between bulk solvent and the buried active sites is a critical event in the catalytic cycle of many enzymes. The rational design of transport pathways is far from trivial due to the lack of knowledge about the effect of mutations on ligand transport. The main and an auxiliary tunnel of haloalkane dehalogenase LinB have been previously engineered for improved dehalogenation of 1,2-dibromoethane (DBE). The first chemical step of DBE conversion was enhanced by L177W mutation in the main tunnel, but the rate-limiting product release was slowed down because the mutation blocked the main access tunnel and hindered protein dynamics. Three additional mutations W140A + F143L + I211L opened-up the auxiliary tunnel and enhanced the product release, making this four-point variant the most efficient catalyst with DBE. Here we study the impact of these mutations on the catalysis of bulky aromatic substrates, 4-(bromomethyl)-6,7-dimethoxycoumarin (COU) and 8-chloromethyl-4,4'-difluoro-3,5-dimethyl-4-bora-3a,4a-diaza-s-indacene (BDP). The rate-limiting step of DBE conversion is the product release, whereas the catalysis of COU and BDP is limited by the chemical step. The catalysis of COU is mainly impaired by the mutation L177W, whereas the conversion of BDP is affected primarily by the mutations W140A + F143L + I211L. The combined computational and kinetic analyses explain the differences in activities between the enzyme-substrate pairs. The effect of tunnel mutations on catalysis depends on the rate-limiting step, the complementarity of the tunnels with the substrates and is clearly specific for each enzyme-substrate pair.

Zobrazit více v PubMed

Ang T-F, Maiangwa J, Salleh AB, Normi YM, Leow TC. Dehalogenases: From improved performance to potential microbial dehalogenation applications. Molecules 2018;23. 10.3390/molecules23051100. PubMed DOI PMC

Koudelakova T., Bidmanova S., Dvorak P., Pavelka A., Chaloupkova R., Prokop Z. Haloalkane dehalogenases: biotechnological applications. Biotechnol J. 2013;8:32–45. PubMed

Bidleman T.F., Andersson A., Jantunen L.M., Kucklick J.R., Kylin H., Letcher R.J. A review of halogenated natural products in Arctic, Subarctic and Nordic ecosystems. Emerging Contaminants. 2019;5:89–115.

Howard P.H., Muir D.C.G. Identifying new persistent and bioaccumulative organics among chemicals in commerce. Environ Sci Technol. 2010;44:2277–2285. PubMed

Belkin S. Biodegradation of haloalkanes. Biodegradation. 1992;3:299–313.

Srivastava V., Srivastava T., Kumar M.S. Fate of the persistent organic pollutant (POP)Hexachlorocyclohexane (HCH) and remediation challenges. Int Biodeterior Biodegrad. 2019;140:43–56.

Biedermannová L., Prokop Z., Gora A., Chovancová E., Kovács M., Damborsky J. A single mutation in a tunnel to the active site changes the mechanism and kinetics of product release in haloalkane dehalogenase LinB. J Biol Chem. 2012;287:29062–29074. PubMed PMC

Prokop, Z. Conformational dynamics of haloalkane dehalogenase LinB introduced by tunnel modification. Loschmidt Laboratories Research Reports 2016.

Brezovsky J., Babkova P., Degtjarik O., Fortova A., Gora A., Iermak I. Engineering a de novo transport tunnel. ACS Catal. 2016;6:7597–7610.

Pavlova M., Klvana M., Prokop Z., Chaloupkova R., Banas P., Otyepka M. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol. 2009;5:727–733. PubMed

Kokkonen P., Bednar D., Pinto G., Prokop Z., Damborsky J. Engineering enzyme access tunnels. Biotechnol Adv. 2019;37 PubMed

Prokop Z., Monincová M., Chaloupková R., Klvaňa M., Nagata Y., Janssen D.B. Catalytic mechanism of the haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. J Biol Chem. 2003;278:45094–45100. PubMed

Streltsov V.A., Prokop Z., Damborský J., Nagata Y., Oakley A., Wilce M.C.J. Haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26: X-ray crystallographic studies of dehalogenation of brominated substrates. Biochemistry. 2003;42:10104–10112. PubMed

Wang J., Tang X., Li Y., Zhang R., Zhu L., Chen J. Computational evidence for the degradation mechanism of haloalkane dehalogenase LinB and mutants of Leu248 to 1-chlorobutane. Phys Chem Chem Phys. 2018;20:20540–20547. PubMed

Heeb N.V., Mazenauer M., Wyss S., Geueke B., Kohler H.-P.E., Lienemann P. Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: comparison of in vitro and in silico results. Chemosphere. 2018;207:118–129. PubMed

Tang X., Zhang R., Li Y., Zhang Q., Wang W. Enantioselectivity of haloalkane dehalogenase LinB on the degradation of 1,2-dichloropropane: a QM/MM study. Bioorg Chem. 2017;73:16–23. PubMed

Kokkonen P., Sykora J., Prokop Z., Ghose A., Bednar D., Amaro M. Molecular gating of an engineered enzyme captured in real time. J Am Chem Soc. 2018;140:17999–18008. PubMed

Chaloupková R., Sýkorová J., Prokop Z., Jesenská A., Monincová M., Pavlová M. Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem. 2003;278:52622–52628. PubMed

Daniel L., Buryska T., Prokop Z., Damborsky J., Brezovsky J. Mechanism-based discovery of novel substrates of haloalkane dehalogenases using in silico screening. J Chem Inf Model. 2015;55:54–62. PubMed

Dockalova V., Sanchez-Carnerero E., Dunajova Z., Palao M., Slanska M., Buryska T. Fluorescent substrates for haloalkane dehalogenases: Novel probes for mechanistic studies and protein labeling. Comput Struct Biotechnol J. 2020 In this issue. PubMed PMC

Scherer M.K., Trendelkamp-Schroer B., Paul F., Pérez-Hernández G., Hoffmann M., Plattner N. PyEMMA 2: a software package for estimation, validation, and analysis of markov models. J Chem Theory Comput. 2015;11:5525–5542. PubMed

Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461. PubMed PMC

Hur S., Kahn K., Bruice T.C. Comparison of formation of reactive conformers for the SN2 displacements by CH3CO2- in water and by Asp124-CO2- in a haloalkane dehalogenase. Proc Natl Acad Sci U S A. 2003;100:2215–2219. PubMed PMC

Nagata Y., Miyauchi K., Damborsky J., Manova K., Ansorgova A., Takagi M. Purification and characterization of a haloalkane dehalogenase of a new substrate class from a gamma-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl Environ Microbiol. 1997;63:3707–3710. PubMed PMC

Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J. Substrate specificity of haloalkane dehalogenases. Biochem J. 2011;435:345–354. PubMed

Kaushik S., Marques S.M., Khirsariya P., Paruch K., Libichova L., Brezovsky J. Impact of the access tunnel engineering on catalysis is strictly ligand-specific. FEBS J. 2018;285:1456–1476. PubMed

Johnson K.A., Simpson Z.B., Blom T. Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal Biochem. 2009;387:20–29. PubMed

Press W.H., Vetterling W.T., Flannery B.P., editors. Numerical recipes: the art of scientific computing. Cambridge University Press; New York, NY: 2007.

Seber G.A.F., Wild C.J., editors. Nonlinear regression. John Wiley; Hoboken, NJ: 2003.

Johnson K.A., Simpson Z.B., Blom T. FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal Biochem. 2009;387:30–41. PubMed

Rose P.W., Bi C., Bluhm W.F., Christie C.H., Dimitropoulos D., Dutta S. The RCSB Protein data bank: new resources for research and education. Nucleic Acids Res. 2013;41:D475–D482. PubMed PMC

Gehret J.J., Gu L., Geders T.W., Brown W.C., Gerwick L., Gerwick W.H. Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Sci. 2012;21:239–248. PubMed PMC

Oakley A.J., Klvana M., Otyepka M., Nagata Y., Wilce M.C.J., Damborský J. Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 A resolution: dynamics of catalytic residues. Biochemistry. 2004;43:870–878. PubMed

Anandakrishnan R., Aguilar B., Onufriev A.V. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012;40:W537–W541. PubMed PMC

The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC n.d.

Doerr S., Harvey M.J., Noé F., De Fabritiis G. HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theory Comput. 2016;12:1845–1852. PubMed

Izadi S., Onufriev A.V. Accuracy limit of rigid 3-point water models. J Chem Phys. 2016;145 PubMed PMC

Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11:3696–3713. PubMed PMC

Peters M.B., Yang Y., Wang B., Füsti-Molnár L., Weaver M.N., Merz K.M. Structural survey of zinc-containing proteins and development of the Zinc AMBER Force Field (ZAFF) J Chem Theory Comput. 2010;6:2935–2947. PubMed PMC

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 Rev. E.01. Wallingford, CT: 2016.

Naritomi Y., Fuchigami S. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. J Chem Phys. 2011;134 PubMed

Hess D., Dockalova V., Kokkonen P., Bednar D., Damborsky J., deMello A. Droplet-based fast enzyme kinetics and thermodynamics. Chem. 2020 In preparation.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...