Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide

. 2021 May 25 ; 12 (1) : 3137. [epub] 20210525

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34035260
Odkazy

PubMed 34035260
PubMed Central PMC8149669
DOI 10.1038/s41467-021-23236-3
PII: 10.1038/s41467-021-23236-3
Knihovny.cz E-zdroje

Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.

Área de Biodiversidad y Conservación Universidad Rey Juan Carlos Móstoles Madrid Spain

Biology Center of the Czech Academy of Sciences Institute of Entomology and the University of South Bohemia Ceske Budejovicve Czech Republic

Biology Department Wilfrid Laurier University Waterloo ON Canada

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences

CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Chinese Academy of Sciences

CAS Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences

Center for Conservation and Sustainability Smithsonian Conservation Biology Institute National Zoological Park Washington DC USA

Center for Ecological Research Northeast Forestry University

Centre for Biodiversity and Conservation Science The University of Queensland St Lucia QLD Australia

College of Forestry and Landscape Architecture South China Agricultural University

College of Life and Environmental Science Minzu University of China

Conservation Ecology Center Smithsonian Conservation Biology Institute National Zoological Park Front Royal VA USA

Departamento Ecologia Universidade de São Paulo Instituto de Biociências Cidade Universitária São Paulo SP Brazil

Department of Biological Sciences Marquette University Milwaukee WI USA

Department of Biological Sciences National Sun Yat sen University

Department of Biology Washington University in St Louis St Louis MO USA

Department of Botany National Museum of Natural History Washington DC USA

Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles CA USA

Department of Ecology Evolution and Environmental Biology Columbia University New York NY USA

Department of Ecology State Key Laboratory of Biocontrol and School of Life Sciences Sun Yat sen University

Department of Environmental Sciences University of Puerto Rico San Juan PR USA

Department of Environmental Studies University of California Santa Cruz CA USA

Department of Forest Ecology Silva Tarouca Research Institute Brno Czech Republic

Department of Forestry and Natural Resources National Chiayi University

Department of Natural Resources and Environmental Studies National Dong Hwa University

Department of Plant and Microbial Biology University of Minnesota St Paul MN USA

Department of Plant Science and Technology University of Jos Jos Nigeria

Department of Plant Sciences University of Cambridge Cambridge UK

Department of Plant Sciences University of Oxford Oxford UK

Department of Renewable Resources University of Alberta Edmonton AB Canada

Department of Soil and Water Conservation National Chung Hsing University

ECNU Alberta Joint Lab for Biodiversity Study Tiantong National Station for Forest Ecosystem Research East China Normal University

Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK

Forest Ecology and Management Group Wageningen University Wageningen The Netherlands

Forest Ecology Group Smithsonian Environmental Research Center Edgewater MD USA

Forest Global Earth Observatory Smithsonian Tropical Research Institute Washington DC USA

Guangdong Chebaling National Nature Reserve

Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain Guangxi Institute of Botany Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences

Harvard Forest Harvard University Petersham MA USA

Heilongjiang Key Laboratory of Forest Ecology and Forestry Ecological Engineering Heilongjiang Forestry Engineering and Environment Institute

Institut de Recherche en Ecologie Tropicale Centre National de la Recherche Scientifique et Technologique Libreville Gabon

Institute of Pacific Islands Forestry Pacific Southwest Research Station USDA Forest Service Hilo Hawaii USA

International Master Program of Agriculture National Chung Hsing University

Key Laboratory of Agro ecological Processes in Subtropical Region Institute of Subtropical Agriculture Chinese Academy of Sciences

Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences

Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences

MOE Key Laboratory of Biosystems Homeostasis and Protection College of Life Sciences Zhejiang University

Natural England York UK

Research Institute of Tropical Forestry Chinese Academy of Forestry

School of Biological Sciences The University of Queensland St Lucia QLD Australia

School of Biological Sciences University of Aberdeen Aberdeen UK

School of Biological Sciences University of Canterbury Christchurch New Zealand

School of Ecology and Environment Northwestern Polytechnical University

Smithsonian Environmental Research Center Edgewater MD USA

Southeast Asia Rainforest Research Partnership Danum Valley Field Centre Lahad Datu Sabah Malaysia

State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences

Swiss Federal Research Institute for Forest Snow and Landscape Research WSL Forest Resources and Management Birmensdorf Switzerland

The Administrative Bureau of Naban River Watershed National Nature Reserve

The Nigerian Montane Forest Project Taraba State Nigeria

UK Centre for Ecology and Hydrology Bush Estate Midlothian UK

Wilderness Institute and Department of Forest Management University of Montana Missoula MT USA

Wildland Resources Department Utah State University Logan UT USA

Wildlife Ecology and Conservation Group Wageningen University and Research Wageningen The Netherlands

Yunnan Lijiang Forest Ecosystem National Observation and Research Station Kunming Instituted of Botany Chinese Academy of Sciences

Zhejiang Tiantong Forest Ecosystem National Observation and Research Station School of Ecology and Environmental Sciences East China Normal University

Zobrazit více v PubMed

Myers JA, LaManna JA. The promise and pitfalls of beta-diversity in ecology and conservation. J. Veg. Sci. 2016;27:1081–1083. doi: 10.1111/jvs.12482. DOI

Socolar JB, Gilroy JJ, Kunin WE, Edwards DP. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 2016;31:67–80. doi: 10.1016/j.tree.2015.11.005. PubMed DOI

Xing DL, He FL. Environmental filtering explains a U-shape latitudinal pattern in regional beta-deviation for eastern North American trees. Ecol. Lett. 2019;22:284–291. doi: 10.1111/ele.13188. PubMed DOI

Anderson MJ, et al. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 2011;14:19–28. doi: 10.1111/j.1461-0248.2010.01552.x. PubMed DOI

Baselga A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010;19:134–143. doi: 10.1111/j.1466-8238.2009.00490.x. DOI

Menegotto A, Dambros CS, Netto SA. The scale-dependent effect of environmental filters on species turnover and nestedness in an estuarine benthic community. Ecology. 2019;100:e02721. doi: 10.1002/ecy.2721. PubMed DOI

Whittaker RH. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 1960;30:279–338. doi: 10.2307/1943563. DOI

Hubbell, S. P. The unified neutral theory of biodiversity and biogeography. (Princeton University Press, 2001).

Nekola JC, White PS. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 1999;26:867–878. doi: 10.1046/j.1365-2699.1999.00305.x. DOI

da Silva PG, Lobo JM, Hensen MC, Vaz-de-Mello FZ, Hernandez MIM. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers Distrib. 2018;24:1277–1290. doi: 10.1111/ddi.12763. DOI

Wang XG, et al. Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Glob. Ecol. Biogeogr. 2018;27:581–592. doi: 10.1111/geb.12719. DOI

McFadden IR, et al. Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic beta diversity. Ecol. Lett. 2019;22:1126–1135. doi: 10.1111/ele.13269. PubMed DOI

Qian H, Chen S, Mao L, Ouyang Z. Drivers of β‐diversity along latitudinal gradients revisited. Glob. Ecol. Biogeogr. 2013;22:659–670. doi: 10.1111/geb.12020. DOI

Xu WB, Chen GK, Liu CR, Ma KP. Latitudinal differences in species abundance distributions, rather than spatial aggregation, explain beta-diversity along latitudinal gradients. Glob. Ecol. Biogeogr. 2015;24:1170–1180. doi: 10.1111/geb.12331. DOI

Kraft NJ, et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science. 2011;333:1755–1758. doi: 10.1126/science.1208584. PubMed DOI

Griffiths D. Connectivity and vagility determine beta diversity and nestedness in North American and European freshwater fish. J. Biogeogr. 2017;44:1723–1733. doi: 10.1111/jbi.12964. DOI

Soininen J, Heino J, Wang JJ. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 2018;27:96–109. doi: 10.1111/geb.12660. DOI

LaManna JA, Belote RT, Burkle LA, Catano CP, Myers JA. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat. Ecol. Evol. 2017;1:1107–1115. doi: 10.1038/s41559-017-0225-4. PubMed DOI

van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205:1406–1423. doi: 10.1111/nph.13288. PubMed DOI

Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77. doi: 10.1007/s11104-008-9877-9. DOI

Gibert A, Tozer W, Westoby M. Plant performance response to eight different types of symbiosis. New Phytol. 2019;222:526–542. doi: 10.1111/nph.15392. PubMed DOI

Veresoglou SD, Rillig MC, Johnson D. Responsiveness of plants to mycorrhiza regulates coexistence. J. Ecol. 2018;106:1864–1875. doi: 10.1111/1365-2745.13026. DOI

Delavaux CS, et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 2019;3:424–429. doi: 10.1038/s41559-019-0823-4. PubMed DOI

Barcelo M, van Bodegom PM, Soudzilovskaia NA. Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. J. Ecol. 2019;107:2564–2573. doi: 10.1111/1365-2745.13275. DOI

Steidinger BS, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature. 2019;571:E8–E8. doi: 10.1038/s41586-019-1342-9. PubMed DOI

Bennett JA, et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–184. doi: 10.1126/science.aai8212. PubMed DOI

Johnson DJ, Clay K, Phillips RP. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia. 2018;186:195–204. doi: 10.1007/s00442-017-3987-0. PubMed DOI

Hargreaves AL, Germain RM, Bontrager M, Persi J, Angert AL. Local adaptation to biotic interactions: a meta-analysis across latitudes. Am. Nat. 2020;195:395–411. doi: 10.1086/707323. PubMed DOI

Liu XB, et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 2018;21:713–723. doi: 10.1111/ele.12939. PubMed DOI

Jacquemyn H, De Kort H, Vanden Broeck A, Brys R. Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of Epipactis helleborine (Orchidaceae) Oikos. 2018;127:73–84. doi: 10.1111/oik.04329. DOI

Osborne OG, et al. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytol. 2018;217:1254–1266. doi: 10.1111/nph.14850. PubMed DOI PMC

Myers JA, et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 2013;16:151–157. doi: 10.1111/ele.12021. PubMed DOI

Jankowski JE, Ciecka AL, Meyer NY, Rabenold KN. Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 2009;78:315–327. doi: 10.1111/j.1365-2656.2008.01487.x. PubMed DOI

McCarthy-Neumann S, Ibáñez I. Tree range expansion may be enhanced by escape from negative plant–soil feedbacks. Ecology. 2012;93:2637–2649. doi: 10.1890/11-2281.1. PubMed DOI

Peay KG. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol., Evol. Syst. 2016;47:143–164. doi: 10.1146/annurev-ecolsys-121415-032100. DOI

Wang ZH, Fang JY, Tang ZY, Shi L. Geographical patterns in the beta diversity of China’s woody plants: the influence of space, environment and range size. Ecography. 2012;35:1092–1102. doi: 10.1111/j.1600-0587.2012.06988.x. DOI

Liang MX, et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 2020;11:2636. doi: 10.1038/s41467-020-16507-y. PubMed DOI PMC

Segnitz, R. M., Russo, S. E., Davies, S. J. & Peay, K. G. Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family. Ecology101, e03083 (2020). PubMed

Chen L, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science. 2019;366:124–128. doi: 10.1126/science.aau1361. PubMed DOI

Brundrett Mark, Murase Gracia, K B. Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can. J. Bot. 1990;68:551–578. doi: 10.1139/b90-076. DOI

Liu Y, He FL. Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. Funct. Ecol. 2019;33:1211–1222. doi: 10.1111/1365-2435.13345. DOI

LaManna JA, et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science. 2017;356:1389–1392. doi: 10.1126/science.aam5678. PubMed DOI

Johnson DJ, Beaulieu WT, Bever JD, Clay K. Conspecific negative density dependence and forest diversity. Science. 2012;336:904–907. doi: 10.1126/science.1220269. PubMed DOI

Crawford KM, et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 2019;22:1274–1284. PubMed

Liu XB, Etienne RS, Liang MX, Wang YF, Yu SX. Experimental evidence for an intraspecific Janzen-Connell effect mediated by soil biota. Ecology. 2015;96:662–671. doi: 10.1890/14-0014.1. PubMed DOI

Chu CJ, et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 2019;22:245–255. PubMed

Gavito ME, Azcon-Aguilar C. Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agr. Food Sci. 2012;21:2–11. doi: 10.23986/afsci.4994. DOI

Hetrick BD, Bloom J. The influence of temperature on colonization of winter wheat by vesicular-arbuscular mycorrhizal fungi. Mycologia. 1984;76:953–956. doi: 10.1080/00275514.1984.12023937. DOI

Anderson-Teixeira KJ, et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 2015;21:528–549. doi: 10.1111/gcb.12712. PubMed DOI

Condit, R. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. (Springer-Verlag andRG. Landes Company, 1998).

Stillhard J, et al. Stand inventory data from the 10-ha forest research plot in Uholka: 15 yr of primeval beech forest development. Ecology. 2019;100:e02845. doi: 10.1002/ecy.2845. PubMed DOI

Marion ZH, Fordyce JA, Fitzpatrick BM. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology. 2017;98:933–939. doi: 10.1002/ecy.1753. PubMed DOI

Bennett JR, Gilbert B. Contrasting beta diversity among regions: how do classical and multivariate approaches compare? Glob. Ecol. Biogeogr. 2016;25:368–377. doi: 10.1111/geb.12413. DOI

Legendre P, De Caceres M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 2013;16:951–963. doi: 10.1111/ele.12141. PubMed DOI

Baselga A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 2013;4:552–557. doi: 10.1111/2041-210X.12029. DOI

De Cáceres M, et al. The variation of tree beta diversity across a global network of forest plots. Glob. Ecol. Biogeogr. 2012;21:1191–1202. doi: 10.1111/j.1466-8238.2012.00770.x. DOI

Yen JDL, Fleishman E, Fogarty F, Dobkin DS. Relating beta diversity of birds and butterflies in the Great Basin to spatial resolution, environmental variables and trait-based groups. Glob. Ecol. Biogeogr. 2019;28:328–340. doi: 10.1111/geb.12852. DOI

Craven D, Knight TM, Barton KE, Bialic-Murphy L, Chase JM. Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago. Proc. Natl Acad. Sci. USA. 2019;116:16436–16441. doi: 10.1073/pnas.1901954116. PubMed DOI PMC

Brundrett M, Tedersoo L. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol. 2019;221:18–24. doi: 10.1111/nph.15440. PubMed DOI

Soudzilovskaia NA, et al. FungalRoot: global online database of plant mycorrhizal associations. New Phytol. 2020;227:955–966. doi: 10.1111/nph.16569. PubMed DOI

Furniss, T. J., Larson, A. J. & Lutz, J. A. Reconciling niches and neutrality in a subalpine temperate forest. Ecosphere8 (2017).

Jucker T, et al. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Change Biol. 2018;24:5243–5258. doi: 10.1111/gcb.14415. PubMed DOI

Legendre P, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology. 2009;90:663–674. doi: 10.1890/07-1880.1. PubMed DOI

Robert J., H. raster: Geographic data analysis and modeling. R package version 2.6-7 (2017). <https://CRAN.R-project.org/package=raster>.

Alahuhta J, et al. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 2017;44:1758–1769. doi: 10.1111/jbi.12978. DOI

Cribari-Neto F, Zeileis A. Beta regression in R. J. Stat. Softw. 2010;34:1–24. doi: 10.18637/jss.v034.i02. DOI

Jump AS, Matyas C, Penuelas J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 2009;24:694–701. doi: 10.1016/j.tree.2009.06.007. PubMed DOI

Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2 (2018). <https://www.r-project.org>.

Gilbert B, Bennett JR. Partitioning variation in ecological communities: do the numbers add up? J. Appl Ecol. 2010;47:1071–1082. doi: 10.1111/j.1365-2664.2010.01861.x. DOI

Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). <https://www.r-project.org/>.

Baselga, A., Orme, D., Villeger, S., De Bortoli, J. & Leprieur, F. Partitioning beta diversity into turnover and nestedness components. R package version 1.5.0 (2019). <https://CRAN.R-project.org/package=betapart>.

Harrell Jr, F. E. & Dupont, C. Hmisc: Harrell miscellaneous. R package version 4.2-3 (2019). <https://cran.r-project.org/package=Hmisc>.

Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.

Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 2.1.6 (2018). <https://cran.r-project.org/package=rfPermute>.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Global patterns of vascular plant alpha diversity

. 2022 Sep 01 ; 13 (1) : 4683. [epub] 20220901

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace