Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34035260
PubMed Central
PMC8149669
DOI
10.1038/s41467-021-23236-3
PII: 10.1038/s41467-021-23236-3
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- distribuce rostlin MeSH
- interakce mikroorganismu a hostitele fyziologie MeSH
- lesy * MeSH
- mykorhiza fyziologie MeSH
- půdní mikrobiologie MeSH
- stromy mikrobiologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
Área de Biodiversidad y Conservación Universidad Rey Juan Carlos Móstoles Madrid Spain
Biology Department Wilfrid Laurier University Waterloo ON Canada
Center for Ecological Research Northeast Forestry University
Centre for Biodiversity and Conservation Science The University of Queensland St Lucia QLD Australia
College of Forestry and Landscape Architecture South China Agricultural University
College of Life and Environmental Science Minzu University of China
Department of Biological Sciences Marquette University Milwaukee WI USA
Department of Biological Sciences National Sun Yat sen University
Department of Biology Washington University in St Louis St Louis MO USA
Department of Botany National Museum of Natural History Washington DC USA
Department of Ecology Evolution and Environmental Biology Columbia University New York NY USA
Department of Environmental Sciences University of Puerto Rico San Juan PR USA
Department of Environmental Studies University of California Santa Cruz CA USA
Department of Forest Ecology Silva Tarouca Research Institute Brno Czech Republic
Department of Forestry and Natural Resources National Chiayi University
Department of Natural Resources and Environmental Studies National Dong Hwa University
Department of Plant and Microbial Biology University of Minnesota St Paul MN USA
Department of Plant Science and Technology University of Jos Jos Nigeria
Department of Plant Sciences University of Cambridge Cambridge UK
Department of Plant Sciences University of Oxford Oxford UK
Department of Renewable Resources University of Alberta Edmonton AB Canada
Department of Soil and Water Conservation National Chung Hsing University
Forest Ecology and Management Group Wageningen University Wageningen The Netherlands
Forest Ecology Group Smithsonian Environmental Research Center Edgewater MD USA
Forest Global Earth Observatory Smithsonian Tropical Research Institute Washington DC USA
Guangdong Chebaling National Nature Reserve
Harvard Forest Harvard University Petersham MA USA
International Master Program of Agriculture National Chung Hsing University
Research Institute of Tropical Forestry Chinese Academy of Forestry
School of Biological Sciences The University of Queensland St Lucia QLD Australia
School of Biological Sciences University of Aberdeen Aberdeen UK
School of Biological Sciences University of Canterbury Christchurch New Zealand
School of Ecology and Environment Northwestern Polytechnical University
Smithsonian Environmental Research Center Edgewater MD USA
Southeast Asia Rainforest Research Partnership Danum Valley Field Centre Lahad Datu Sabah Malaysia
The Administrative Bureau of Naban River Watershed National Nature Reserve
The Nigerian Montane Forest Project Taraba State Nigeria
UK Centre for Ecology and Hydrology Bush Estate Midlothian UK
Wilderness Institute and Department of Forest Management University of Montana Missoula MT USA
Wildland Resources Department Utah State University Logan UT USA
Zobrazit více v PubMed
Myers JA, LaManna JA. The promise and pitfalls of beta-diversity in ecology and conservation. J. Veg. Sci. 2016;27:1081–1083. doi: 10.1111/jvs.12482. DOI
Socolar JB, Gilroy JJ, Kunin WE, Edwards DP. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 2016;31:67–80. doi: 10.1016/j.tree.2015.11.005. PubMed DOI
Xing DL, He FL. Environmental filtering explains a U-shape latitudinal pattern in regional beta-deviation for eastern North American trees. Ecol. Lett. 2019;22:284–291. doi: 10.1111/ele.13188. PubMed DOI
Anderson MJ, et al. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 2011;14:19–28. doi: 10.1111/j.1461-0248.2010.01552.x. PubMed DOI
Baselga A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010;19:134–143. doi: 10.1111/j.1466-8238.2009.00490.x. DOI
Menegotto A, Dambros CS, Netto SA. The scale-dependent effect of environmental filters on species turnover and nestedness in an estuarine benthic community. Ecology. 2019;100:e02721. doi: 10.1002/ecy.2721. PubMed DOI
Whittaker RH. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 1960;30:279–338. doi: 10.2307/1943563. DOI
Hubbell, S. P. The unified neutral theory of biodiversity and biogeography. (Princeton University Press, 2001).
Nekola JC, White PS. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 1999;26:867–878. doi: 10.1046/j.1365-2699.1999.00305.x. DOI
da Silva PG, Lobo JM, Hensen MC, Vaz-de-Mello FZ, Hernandez MIM. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers Distrib. 2018;24:1277–1290. doi: 10.1111/ddi.12763. DOI
Wang XG, et al. Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Glob. Ecol. Biogeogr. 2018;27:581–592. doi: 10.1111/geb.12719. DOI
McFadden IR, et al. Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic beta diversity. Ecol. Lett. 2019;22:1126–1135. doi: 10.1111/ele.13269. PubMed DOI
Qian H, Chen S, Mao L, Ouyang Z. Drivers of β‐diversity along latitudinal gradients revisited. Glob. Ecol. Biogeogr. 2013;22:659–670. doi: 10.1111/geb.12020. DOI
Xu WB, Chen GK, Liu CR, Ma KP. Latitudinal differences in species abundance distributions, rather than spatial aggregation, explain beta-diversity along latitudinal gradients. Glob. Ecol. Biogeogr. 2015;24:1170–1180. doi: 10.1111/geb.12331. DOI
Kraft NJ, et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science. 2011;333:1755–1758. doi: 10.1126/science.1208584. PubMed DOI
Griffiths D. Connectivity and vagility determine beta diversity and nestedness in North American and European freshwater fish. J. Biogeogr. 2017;44:1723–1733. doi: 10.1111/jbi.12964. DOI
Soininen J, Heino J, Wang JJ. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 2018;27:96–109. doi: 10.1111/geb.12660. DOI
LaManna JA, Belote RT, Burkle LA, Catano CP, Myers JA. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat. Ecol. Evol. 2017;1:1107–1115. doi: 10.1038/s41559-017-0225-4. PubMed DOI
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205:1406–1423. doi: 10.1111/nph.13288. PubMed DOI
Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77. doi: 10.1007/s11104-008-9877-9. DOI
Gibert A, Tozer W, Westoby M. Plant performance response to eight different types of symbiosis. New Phytol. 2019;222:526–542. doi: 10.1111/nph.15392. PubMed DOI
Veresoglou SD, Rillig MC, Johnson D. Responsiveness of plants to mycorrhiza regulates coexistence. J. Ecol. 2018;106:1864–1875. doi: 10.1111/1365-2745.13026. DOI
Delavaux CS, et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 2019;3:424–429. doi: 10.1038/s41559-019-0823-4. PubMed DOI
Barcelo M, van Bodegom PM, Soudzilovskaia NA. Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. J. Ecol. 2019;107:2564–2573. doi: 10.1111/1365-2745.13275. DOI
Steidinger BS, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature. 2019;571:E8–E8. doi: 10.1038/s41586-019-1342-9. PubMed DOI
Bennett JA, et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–184. doi: 10.1126/science.aai8212. PubMed DOI
Johnson DJ, Clay K, Phillips RP. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia. 2018;186:195–204. doi: 10.1007/s00442-017-3987-0. PubMed DOI
Hargreaves AL, Germain RM, Bontrager M, Persi J, Angert AL. Local adaptation to biotic interactions: a meta-analysis across latitudes. Am. Nat. 2020;195:395–411. doi: 10.1086/707323. PubMed DOI
Liu XB, et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 2018;21:713–723. doi: 10.1111/ele.12939. PubMed DOI
Jacquemyn H, De Kort H, Vanden Broeck A, Brys R. Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of Epipactis helleborine (Orchidaceae) Oikos. 2018;127:73–84. doi: 10.1111/oik.04329. DOI
Osborne OG, et al. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytol. 2018;217:1254–1266. doi: 10.1111/nph.14850. PubMed DOI PMC
Myers JA, et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 2013;16:151–157. doi: 10.1111/ele.12021. PubMed DOI
Jankowski JE, Ciecka AL, Meyer NY, Rabenold KN. Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 2009;78:315–327. doi: 10.1111/j.1365-2656.2008.01487.x. PubMed DOI
McCarthy-Neumann S, Ibáñez I. Tree range expansion may be enhanced by escape from negative plant–soil feedbacks. Ecology. 2012;93:2637–2649. doi: 10.1890/11-2281.1. PubMed DOI
Peay KG. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol., Evol. Syst. 2016;47:143–164. doi: 10.1146/annurev-ecolsys-121415-032100. DOI
Wang ZH, Fang JY, Tang ZY, Shi L. Geographical patterns in the beta diversity of China’s woody plants: the influence of space, environment and range size. Ecography. 2012;35:1092–1102. doi: 10.1111/j.1600-0587.2012.06988.x. DOI
Liang MX, et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 2020;11:2636. doi: 10.1038/s41467-020-16507-y. PubMed DOI PMC
Segnitz, R. M., Russo, S. E., Davies, S. J. & Peay, K. G. Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family. Ecology101, e03083 (2020). PubMed
Chen L, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science. 2019;366:124–128. doi: 10.1126/science.aau1361. PubMed DOI
Brundrett Mark, Murase Gracia, K B. Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can. J. Bot. 1990;68:551–578. doi: 10.1139/b90-076. DOI
Liu Y, He FL. Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. Funct. Ecol. 2019;33:1211–1222. doi: 10.1111/1365-2435.13345. DOI
LaManna JA, et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science. 2017;356:1389–1392. doi: 10.1126/science.aam5678. PubMed DOI
Johnson DJ, Beaulieu WT, Bever JD, Clay K. Conspecific negative density dependence and forest diversity. Science. 2012;336:904–907. doi: 10.1126/science.1220269. PubMed DOI
Crawford KM, et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 2019;22:1274–1284. PubMed
Liu XB, Etienne RS, Liang MX, Wang YF, Yu SX. Experimental evidence for an intraspecific Janzen-Connell effect mediated by soil biota. Ecology. 2015;96:662–671. doi: 10.1890/14-0014.1. PubMed DOI
Chu CJ, et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 2019;22:245–255. PubMed
Gavito ME, Azcon-Aguilar C. Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agr. Food Sci. 2012;21:2–11. doi: 10.23986/afsci.4994. DOI
Hetrick BD, Bloom J. The influence of temperature on colonization of winter wheat by vesicular-arbuscular mycorrhizal fungi. Mycologia. 1984;76:953–956. doi: 10.1080/00275514.1984.12023937. DOI
Anderson-Teixeira KJ, et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 2015;21:528–549. doi: 10.1111/gcb.12712. PubMed DOI
Condit, R. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. (Springer-Verlag andRG. Landes Company, 1998).
Stillhard J, et al. Stand inventory data from the 10-ha forest research plot in Uholka: 15 yr of primeval beech forest development. Ecology. 2019;100:e02845. doi: 10.1002/ecy.2845. PubMed DOI
Marion ZH, Fordyce JA, Fitzpatrick BM. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology. 2017;98:933–939. doi: 10.1002/ecy.1753. PubMed DOI
Bennett JR, Gilbert B. Contrasting beta diversity among regions: how do classical and multivariate approaches compare? Glob. Ecol. Biogeogr. 2016;25:368–377. doi: 10.1111/geb.12413. DOI
Legendre P, De Caceres M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 2013;16:951–963. doi: 10.1111/ele.12141. PubMed DOI
Baselga A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 2013;4:552–557. doi: 10.1111/2041-210X.12029. DOI
De Cáceres M, et al. The variation of tree beta diversity across a global network of forest plots. Glob. Ecol. Biogeogr. 2012;21:1191–1202. doi: 10.1111/j.1466-8238.2012.00770.x. DOI
Yen JDL, Fleishman E, Fogarty F, Dobkin DS. Relating beta diversity of birds and butterflies in the Great Basin to spatial resolution, environmental variables and trait-based groups. Glob. Ecol. Biogeogr. 2019;28:328–340. doi: 10.1111/geb.12852. DOI
Craven D, Knight TM, Barton KE, Bialic-Murphy L, Chase JM. Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago. Proc. Natl Acad. Sci. USA. 2019;116:16436–16441. doi: 10.1073/pnas.1901954116. PubMed DOI PMC
Brundrett M, Tedersoo L. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol. 2019;221:18–24. doi: 10.1111/nph.15440. PubMed DOI
Soudzilovskaia NA, et al. FungalRoot: global online database of plant mycorrhizal associations. New Phytol. 2020;227:955–966. doi: 10.1111/nph.16569. PubMed DOI
Furniss, T. J., Larson, A. J. & Lutz, J. A. Reconciling niches and neutrality in a subalpine temperate forest. Ecosphere8 (2017).
Jucker T, et al. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Change Biol. 2018;24:5243–5258. doi: 10.1111/gcb.14415. PubMed DOI
Legendre P, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology. 2009;90:663–674. doi: 10.1890/07-1880.1. PubMed DOI
Robert J., H. raster: Geographic data analysis and modeling. R package version 2.6-7 (2017). <https://CRAN.R-project.org/package=raster>.
Alahuhta J, et al. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 2017;44:1758–1769. doi: 10.1111/jbi.12978. DOI
Cribari-Neto F, Zeileis A. Beta regression in R. J. Stat. Softw. 2010;34:1–24. doi: 10.18637/jss.v034.i02. DOI
Jump AS, Matyas C, Penuelas J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 2009;24:694–701. doi: 10.1016/j.tree.2009.06.007. PubMed DOI
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2 (2018). <https://www.r-project.org>.
Gilbert B, Bennett JR. Partitioning variation in ecological communities: do the numbers add up? J. Appl Ecol. 2010;47:1071–1082. doi: 10.1111/j.1365-2664.2010.01861.x. DOI
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). <https://www.r-project.org/>.
Baselga, A., Orme, D., Villeger, S., De Bortoli, J. & Leprieur, F. Partitioning beta diversity into turnover and nestedness components. R package version 1.5.0 (2019). <https://CRAN.R-project.org/package=betapart>.
Harrell Jr, F. E. & Dupont, C. Hmisc: Harrell miscellaneous. R package version 4.2-3 (2019). <https://cran.r-project.org/package=Hmisc>.
Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 2.1.6 (2018). <https://cran.r-project.org/package=rfPermute>.