Reduction of Fluoroscopy Time and Radiation Dosage During Catheter Ablation for Atrial Fibrillation
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
27617094
PubMed Central
PMC5013175
DOI
10.15420/aer.2016.16.2
Knihovny.cz E-zdroje
- Klíčová slova
- Atrial fibrillation, fluoroscopy, imaging technology, radiation exposure, radiofrequency ablation,
- Publikační typ
- časopisecké články MeSH
Radiofrequency catheter ablation has become the treatment of choice for atrial fibrillation (AF) that does not respond to antiarrhythmic drug therapy. During the procedure, fluoroscopy imaging is still considered essential to visualise catheters in real-time. However, radiation is often ignored by physicians since it is invisible and the long-term risks are underestimated. In this respect, it must be emphasised that radiation exposure has various potentially harmful effects, such as acute skin injury, malignancies and genetic disease, both to patients and physicians. For this reason, every electrophysiologist should be aware of the problem and should learn how to decrease radiation exposure by both changing the setting of the system and using complementary imaging technologies. In this review, we aim to discuss the basics of X-ray exposure and suggest practical instructions for how to reduce radiation dosage during AF ablation procedures.
Zobrazit více v PubMed
Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiatio of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–66. PubMed
Heidbuchel H, Wittkampf FH, Vano E, et al. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace. 2014;16:946–64. DOI: 10.1093/europace/eut409. PubMed
Macle L, Weerasooriya R, Jais P, et al. Radiation exposure during radiofrequency catheter ablation for atrial fibrillation. Pacing Clin Electrophysiol. 2003;26:288–91. PubMed
Lickfett L, Mahesh M, Vasamreddy C, et al. Radiation exposure during catheter ablation of atrial fibrillation. Circulation. 2004;110:3003–10. PubMed
Cappato R, Calkins H, Chen SA, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:32–8. DOI: 10.1161/CIRCEP.109.859116. PubMed
Haines DE. Atrial fibrillation ablation in the real world. J Am Coll Cardiol. 2012;59:150–2. DOI: 10.1016/j.jacc.2011.08.070. PubMed
Picano E, Santoro G, Vano E. Sustainability in the cardiac cath lab. Int J Cardiovasc Imaging. 2007;23:143–7. PubMed
Jansen M, Yip S, Louis DN. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol. 2010;9:717–26. DOI: 10.1016/S1474-4422(10)70105-8. PubMed PMC
Goldstein JA, Balter S, Cowley M, et al. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv. 2004;63:407–11. PubMed
Venneri L, Rossi F, Botto N, et al. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council’s Biological Effects of Ionizing Radiation VII Report. Am Heart J. 2009;157:118–24. DOI: 10.1016/j.ahj.2008.08.009. PubMed
Hirshfeld J W Jr, Balter S, Brinker JA, et al. ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. Circulation. 2005;111:511–32. PubMed
Klein LW, Miller DL, Balter S, et al. Occupational health hazards in the interventional laboratory: time for a safer environment. Heart Rhythm. 2009;6:439–44. DOI: 10.1016/j.hrthm.2009.01.030. PubMed
Dehmer GJ. Occupational hazards for interventional cardiologists. Catheter Cardiovasc Interv. 2006;68:974–6. PubMed
Johnson L M, Moore RJ, Balter S. Review of radiation safety in the cardiac catheterization laboratory. Cathet Cardiovasc Diagn. 1992;25:186–94. PubMed
Aldridge HE, Chisholm RJ, Dragatakis L, et al. Radiation safety in the cardiac catheterization laboratory. Can J Cardiol. 1997;13:459–67. PubMed
Vano E, Gonzalez L, Guibelalde E, et al. Radiation exposure to medical staff in interventional and cardiac radiology. Br J Radiol. 1998;71:954–60. PubMed
Vano E, Gonzalez L, Beneytez F, et al. Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. Br J Radiol. 1998;71:728–33. PubMed
Kim KP, Miller DL, Balter S, et al. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys. 2008;94:211–27. DOI: 10.1097/01. HP.0000290614.76386.35. PubMed
Volzke H, Werner A, Wallaschofski H, et al. Occupational exposure to ionizing radiation is associated with autoimmune thyroid disease. J Clin Endocrinol Metab. 2005;90:4587–92. PubMed
ICRP, Eckerman K, Harrison J, et al. ICRP Publication 119: Compendium of dose coefficients based on ICRP Publication 60. Ann ICRP. 2012;41(Suppl 1):1–130. DOI: 10.1016/j.icrp.2012.06.038. PubMed
Miller DL, Vano E, Bartal G, et al. Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. J Vasc Interv Radiol. 2010;21:607–15. DOI: 10.1016/j.jvir.2010.01.007. PubMed
The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37:1–332. ICRP. PubMed
Koenig TR, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures: part 2, review of 73 cases and recommendations for minimizing dose delivered to patient. AJR Am J Roentgenol. 2001;177:13–20. PubMed
Wagner LK, McNeese MD, Marx MV, et al. Severe skin reactions from interventional fluoroscopy: case report and review of the literature. Radiology. 1999;213:773–6. PubMed
Koenig TR, Wolff D, Mettler FA, et al. Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am J Roentgenol. 2001;177:3–11. PubMed
Andreassi MG, Foffa I, Manfredi S, et al. Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutat Res. 2009;666:57–63. DOI: 10.1016/j.mrfmmm.2009.04.003. PubMed
Wagner LK, Eifel PJ, Geise RA. Potential biological effects following high X-ray dose interventional procedures. J Vasc Interv Radiol. 1994;5:71–84. PubMed
Buchanan GL, Chieffo A, Mehilli J, et al. The occupational effects of interventional cardiology: results from the WIN for Safety survey. EuroIntervention. 2012;8:658–63. DOI: 10.4244/EIJV8I6A103. PubMed
Ciraj-Bjelac O, Rehani MM, Sim KH, et al. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76:826–34. DOI: 10.1002/ccd.22670. PubMed
Nahass G T. Fluoroscopy and the skin: implications for radiofrequency catheter ablation. Am J Cardiol. 1995;76:174–6. PubMed
Park TH, Eichling JO, Schechtman KB, et al. Risk of radiation induced skin injuries from arrhythmia ablation procedures. Pacing Clin Electrophysiol. 1996;19:1363–9. PubMed
Authors on behalf of I, Stewart FA, Akleyev AV, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41:1–322. DOI: 10.1016/j.icrp.2012.02.001. PubMed
Valentin J. Avoidance of radiation injuries from medical interventional procedures. Ann ICRP. 2000;30:7–67. PubMed
Roguin A, Goldstein J, Bar O, et al. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111:1368–72. DOI: 10.1016/j.amjcard.2012.12.060. PubMed
Nof E, Lane C, Cazalas M, et al. Reducing radiation exposure in the electrophysiology laboratory: it is more than just fluoroscopy times! Pacing Clin Electrophysiol. 2015;38:136–45. DOI: 10.1111/pace.12544. PubMed
Vano E, Gonzalez L, Fernandez JM, et al. Occupational radiation doses in interventional cardiology: a 15-year follow-up. Br J Radiol. 2006;79:383–8. PubMed
Stecker MS, Balter S, Towbin RB, et al. Guidelines for patient radiation dose management. J Vasc Interv Radiol. 2009;20::S263–73. DOI: 10.1016/j.jvir.2009.04.037. PubMed
Hamer OW, Sirlin CB, Strotzer M, et al. Chest radiography with a flat-panel detector: image quality with dose reduction after copper filtration. Radiology. 2005;237:691–700. PubMed
den Boer A, de Feyter PJ, Hummel WA, et al. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering. Circulation. 1994;89:2710–4. PubMed
Rogers D P, England F, Lozhkin K, et al. Improving safety in the electrophysiology laboratory using a simple radiation dose reduction strategy: a study of 1007 radiofrequency ablation procedures. Heart. 2011;97:366–70. DOI: 10.1136/hrt.2010.204222. PubMed
Lloyd P, Lowe D, Harty DS, et al. The secondary radiation grid; its effect on fluoroscopic dose-area product during barium enema examinations. Br J Radiol. 1998;71:303–6. PubMed
Dekker LR, van der Voort PH, Simmers TA, et al. New image processing and noise reduction technology allows reduction of radiation exposure in complex electrophysiologic interventions while maintaining optimal image quality: a randomized clinical trial. Heart Rhythm. 2013;10:1678–82. DOI: 10.1016/j.hrthm.2013.08.018. PubMed
Klein LW, Tra Y, Garratt KN, et al. Occupational health hazards of interventional cardiologists in the current decade: Results of the 2014 SCAI membership survey. Catheter Cardiovasc Interv. 2015;86:913–24. DOI: 10.1002/ccd.25927. PubMed
Walters TE, Kistler PM, Morton JB, et al. Impact of collimation on radiation exposure during interventional electrophysiology. Europace. 2012;14:1670–3. DOI: 10.1093/europace/eus095. PubMed
De Buck S, La Gerche A, Ector J, et al. Asymmetric collimation can significantly reduce patient radiation dose during pulmonary vein isolation. Europace. 2012;14:437–44. DOI: 10.1093/europace/eur346. PubMed
Kuon E, Dahm JB, Empen K, et al. Identification of less-irradiating tube angulations in invasive cardiology. J Am Coll Cardiol. 2004;44:1420–8. PubMed
Pitney MR, Allan RM, Giles RW, et al. Modifying fluoroscopic views reduces operator radiation exposure during coronary angioplasty. J Am Coll Cardiol. 1994;24:1660–3. PubMed
Agarwal S, Parashar A, Bajaj NS, et al. Relationship of beam angulation and radiation exposure in the cardiac catheterization laboratory. JACC Cardiovasc Interv. 2014;7:558–66. DOI: 10.1016/j.jcin.2013.12.203. PubMed
Guidelines for Radiation Safety in Interventional Cardiology (JCS 2006). Digest version. Circ J. 2010;74:2760–85. JCS Joint Working Group. PubMed
Gornick CC, Adler SW, Pederson B, et al. Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation. 1999;99:829–35. PubMed
Wittkampf FH, Wever EF, Derksen R, et al. LocaLisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation. 1999;99:1312–7. PubMed
Bhakta D, Miller JM. Principles of electroanatomic mapping. Indian Pacing Electrophysiol J. 2008;8:32–50. PubMed PMC
Knackstedt C, Schauerte P, Kirchhof P. Electro-anatomic mapping systems in arrhythmias. Europace. 2008;10(Suppl 3):iii28–34. DOI: 10.1093/europace/eun225. PubMed
Khongphatthanayothin A, Kosar E, Nademanee K. Nonfluoroscopic three-dimensional mapping for arrhythmia ablation: tool or toy? J Cardiovasc Electrophysiol. 2000;11:239–43. PubMed
Earley MJ, Showkathali R, Alzetani M, et al. Radiofrequency ablation of arrhythmias guided by non-fluoroscopic catheter location: a prospective randomized trial. Eur Heart J. 2006;27:1223–9. PubMed
Scaglione M, Biasco L, Caponi D, et al. Visualization of multiple catheters with electroanatomical mapping reduces X-ray exposure during atrial fibrillation ablation. Europace. 2011;13:955–62. DOI: 10.1093/europace/eur062. PubMed
Stabile G, Scaglione M, del Greco M, et al. Reduced fluoroscopy exposure during ablation of atrial fibrillation using a novel electroanatomical navigation system: a multicentre experience. Europace. 2012;14:60–5. DOI: 10.1093/europace/eur271. PubMed
Ector J, De Buck S, Loeckx D, et al. Changes in left atrial anatomy due to respiration: impact on three-dimensional image integration during atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2008;19:828–34. DOI: 10.1111/j.1540-8167.2008.01128.x. PubMed
Ector J, Loeckx D, Coudijzer W, et al. Images in cardiovascular medicine. Changes in left atrial and pulmonary venous anatomy during respiration: a 4-dimensional computed tomography-based assessment and implications for atrial fibrillation ablation. Circulation. 2007;115 :e617–9. PubMed
Pratola C, Baldo E, Artale P, et al. Different image integration modalities to guide AF ablation: impact on procedural and fluoroscopy times. Pacing Clin Electrophysiol. 2011;34:422–30. DOI: 10.1111/j.1540-8159.2010.02989.x. PubMed
Biermann J, Bode C, Asbach S. Intracardiac echocardiography during catheter-based ablation of atrial fibrillation. Cardiol Res Pract. 2012;2012:921746. DOI: 10.1155/2012/921746. PubMed PMC
Marchlinski FE, Callans D, Dixit S, et al. Efficacy and safety of targeted focal ablation versus PV isolation assisted by magnetic electroanatomic mapping. J Cardiovasc Electrophysiol. 2003;14:358–65. PubMed
Dravid SG, Hope B, McKinnie JJ. Intracardiac echocardiography in electrophysiology: a review of current applications in practice. Echocardiography. 2008;25:1172–5. DOI: 10.1111/j.1540-8175.2008.00784.x. PubMed
Burkhardt JD, Natale A. New technologies in atrial fibrillation ablation. Circulation. 2009;120:1533–41. DOI: 10.1161/CIRCULATIONAHA.109.858233. PubMed
Reddy VY, Morales G, Ahmed H, et al. Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm. 2010;7:1644–53. DOI: 10.1016/j.hrthm.2010.07.011. PubMed
Ferguson JD, Helms A, Mangrum JM, et al. Catheter ablation of atrial fibrillation without fluoroscopy using intracardiac echocardiography and electroanatomic mapping. Circ Arrhythm Electrophysiol. 2009;2:611–9. DOI: 10.1161/CIRCEP.109.872093. PubMed PMC
Shurrab M, Di Biase L, Briceno DF, et al. Impact of contact force technology on atrial fibrillation ablation: a meta-analysis. J Am Heart Assoc. 2015;4 :e002476. DOI: 10.1161/JAHA.115.002476. PubMed PMC
Sigmund E, Puererfellner H, Derndorfer M, et al. Optimizing radiofrequency ablation of paroxysmal and persistent atrial fibrillation by direct catheter force measurement-a case-matched comparison in 198 patients. Pacing Clin Electrophysiol. 2015;38:201–8. DOI: 10.1111/pace.12549. PubMed
Christoph M, Wunderlich C, Moebius S, et al. Fluoroscopy integrated 3D mapping significantly reduces radiation exposure during ablation for a wide spectrum of cardiac arrhythmias. Europace. 2015;17:928–37. DOI: 10.1093/europace/euu334. PubMed
Sommer P, Rolf S, Piorkowski C, et al. Nonfluoroscopic catheter visualization in atrial fibrillation ablation: experience from 375 consecutive procedures. Circ Arrhythm Electrophysiol. 2014;7:869–74. DOI: 10.1161/CIRCEP.114.001542. PubMed
Rolf S, Sommer P, Gaspar T, et al. Ablation of atrial fibrillation using novel 4-dimensional catheter tracking within autoregistered left atrial angiograms. Circ Arrhythm Electrophysiol. 2012;5:684–90. DOI: 10.1161/CIRCEP.112.971705. PubMed
Bourier F, Reents T, Ammar-Busch S, et al. Evaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology procedures. Europace. 2015: pii: euv364. PubMed PMC
Malliet N, Andrade JG, Khairy P, et al. Impact of a novel catheter tracking system on radiation exposure during the procedural phases of atrial fibrillation and flutter ablation. Pacing Clin Electrophysiol. 2015;38:784–90. DOI: 10.1111/pace.12611. PubMed
Aldhoon B, Wichterle D, Peichl P, et al. Successful approaches in reduction of fluoroscopy time and radiation dose during catheter ablation for atrial fibrillation. Eur Heart J. 2015;36 (Suppl 1):165. DOI:10.1093/eurheartj/ehv399.
Aldhoon B, Wichterle D, Peichl P, et al. Complications of catheter ablation for atrial fibrillation in a high-volume centre with the use of intracardiac echocardiography. Europace. 2013;15:24–32. DOI: 10.1093/europace/eus304. PubMed
Bradfield J, Tung R, Mandapati R, et al. Catheter ablation utilizing remote magnetic navigation: a review of applications and outcomes. Pacing Clin Electrophysiol. 2012;35:1021–34. DOI: 10.1111/j.1540-8159.2012.03382.x. PubMed
Di Biase L, Wang Y, Horton R, et al. Ablation of atrial fibrillation utilizing robotic catheter navigation in comparison to manual navigation and ablation: single-center experience. J Cardiovasc Electrophysiol. 2009;20:1328–35. DOI: 10.1111/j.1540-8167.2009.01570.x. PubMed
Miyazaki S, Shah AJ, Xhaet O, et al. Remote magnetic navigation with irrigated tip catheter for ablation of paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:585–9. DOI: 10.1161/CIRCEP.110.957803. PubMed
Arya A, Zaker-Shahrak R, Sommer P, et al. Catheter ablation of atrial fibrillation using remote magnetic catheter navigation: a case-control study. Europace. 2011;13:45–50. DOI: 10.1093/europace/euq344. PubMed
Luthje L, Vollmann D, Seegers J, et al. Remote magnetic versus manual catheter navigation for circumferential pulmonary vein ablation in patients with atrial fibrillation. Clin Res Cardiol. 2011;100:1003–11. DOI: 10.1007/s00392-011-0333-0. PubMed PMC
Katsiyiannis WT, Melby DP, Matelski JL, et al. Feasibility and safety of remote-controlled magnetic navigation for ablation of atrial fibrillation. Am J Cardiol. 2008;102:1674–6. DOI: 10.1016/j.amjcard.2008.08.012. PubMed
Malcolme-Lawes LC, Lim PB, Koa-Wing M, et al. Robotic assistance and general anaesthesia improve catheter stability and increase signal attenuation during atrial fibrillation ablation. Europace. 2013;15:41–7. DOI: 10.1093/europace/eus244. PubMed
Thomas D, Scholz EP, Schweizer PA, et al. Initial experience with robotic navigation for catheter ablation of paroxysmal and persistent atrial fibrillation. J Electrocardiol. 2012;45:95–101. DOI: 10.1016/j.jelectrocard.2011.05.005. PubMed
Hlivak P, Mlcochova H, Peichl P, et al. Robotic navigation in catheter ablation for paroxysmal atrial fibrillation: midterm efficacy and predictors of postablation arrhythmia recurrences. J Cardiovasc Electrophysiol. 2011;22:534–40. DOI: 10.1111/j.1540-8167.2010.01942.x. PubMed
Kautzner J, Peichl P, Cihak R, et al. Early experience with robotic navigation for catheter ablation of paroxysmal atrial fibrillation. Pacing Clin Electrophysiol. 2009;32(Suppl 1):S163–6. DOI: 10.1111/j.1540-8159.2008.02277.x. PubMed
Steven D, Servatius H, Rostock T, et al. Reduced fluoroscopy during atrial fibrillation ablation: benefits of robotic guided navigation. J Cardiovasc Electrophysiol. 2010;21:6–12. DOI: 10.1111/j.1540-8167.2009.01592.x. PubMed
Eitel C, Hindricks G, Grothoff M, et al. Catheter ablation guided by real-time MRI. Curr Cardiol Rep. 2014;16:511. DOI: 10.1007/s11886-014-0511-6. PubMed
Nazarian S, Kolandaivelu A, Zviman MM, et al. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation. 2008;118:223–9. DOI: 10.1161/CIRCULATIONAHA.107. 742452. PubMed PMC
Picano E, Vano E, Rehani MM, et al. The appropriate and justified use of medical radiation in cardiovascular imaging: a position document of the ESC Associations of Cardiovascular Imaging, Percutaneous Cardiovascular Interventions and Electrophysiology. Eur Heart J. 2014;35:665–72. DOI: 10.1093/eurheartj/eht394. PubMed
Moore WE, Ferguson G, Rohrmann C. Physical factors determining the utility of radiation safety glasses. Med Phys. 1980;7:8–12. PubMed
Pasciak AS, Jones AK. Time to take the gloves off: the use of radiation reduction gloves can greatly increase patient dose. J Appl Clin Med Phys. 2014;15:5002. DOI: 10.1120/jacmp. v15i6.5002. PubMed PMC
Kim AN, Chang YJ, Cheon BK, et al. How effective are radiation reducing gloves in C-arm fluoroscopy-guided pain interventions? Korean J Pain. 2014;27:145–51. DOI: 10.3344/kjp.2014.27.2.145. PubMed PMC
Dragusin O, Weerasooriya R, Jais P, et al. Evaluation of a radiation protection cabin for invasive electrophysiological procedures. Eur Heart J. 2007;28:183–9. PubMed
Marichal DA, Anwar T, Kirsch D, et al. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist. J Vasc Interv Radiol. 2011;22:437–42. DOI: 10.1016/j. jvir.2010.12.016. PubMed