Reduction of Fluoroscopy Time and Radiation Dosage During Catheter Ablation for Atrial Fibrillation

. 2016 Aug ; 5 (2) : 144-9.

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27617094

Radiofrequency catheter ablation has become the treatment of choice for atrial fibrillation (AF) that does not respond to antiarrhythmic drug therapy. During the procedure, fluoroscopy imaging is still considered essential to visualise catheters in real-time. However, radiation is often ignored by physicians since it is invisible and the long-term risks are underestimated. In this respect, it must be emphasised that radiation exposure has various potentially harmful effects, such as acute skin injury, malignancies and genetic disease, both to patients and physicians. For this reason, every electrophysiologist should be aware of the problem and should learn how to decrease radiation exposure by both changing the setting of the system and using complementary imaging technologies. In this review, we aim to discuss the basics of X-ray exposure and suggest practical instructions for how to reduce radiation dosage during AF ablation procedures.

Zobrazit více v PubMed

Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiatio of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–66. PubMed

Heidbuchel H, Wittkampf FH, Vano E, et al. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace. 2014;16:946–64. DOI: 10.1093/europace/eut409. PubMed

Macle L, Weerasooriya R, Jais P, et al. Radiation exposure during radiofrequency catheter ablation for atrial fibrillation. Pacing Clin Electrophysiol. 2003;26:288–91. PubMed

Lickfett L, Mahesh M, Vasamreddy C, et al. Radiation exposure during catheter ablation of atrial fibrillation. Circulation. 2004;110:3003–10. PubMed

Cappato R, Calkins H, Chen SA, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:32–8. DOI: 10.1161/CIRCEP.109.859116. PubMed

Haines DE. Atrial fibrillation ablation in the real world. J Am Coll Cardiol. 2012;59:150–2. DOI: 10.1016/j.jacc.2011.08.070. PubMed

Picano E, Santoro G, Vano E. Sustainability in the cardiac cath lab. Int J Cardiovasc Imaging. 2007;23:143–7. PubMed

Jansen M, Yip S, Louis DN. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol. 2010;9:717–26. DOI: 10.1016/S1474-4422(10)70105-8. PubMed PMC

Goldstein JA, Balter S, Cowley M, et al. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv. 2004;63:407–11. PubMed

Venneri L, Rossi F, Botto N, et al. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council’s Biological Effects of Ionizing Radiation VII Report. Am Heart J. 2009;157:118–24. DOI: 10.1016/j.ahj.2008.08.009. PubMed

Hirshfeld J W Jr, Balter S, Brinker JA, et al. ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. Circulation. 2005;111:511–32. PubMed

Klein LW, Miller DL, Balter S, et al. Occupational health hazards in the interventional laboratory: time for a safer environment. Heart Rhythm. 2009;6:439–44. DOI: 10.1016/j.hrthm.2009.01.030. PubMed

Dehmer GJ. Occupational hazards for interventional cardiologists. Catheter Cardiovasc Interv. 2006;68:974–6. PubMed

Johnson L M, Moore RJ, Balter S. Review of radiation safety in the cardiac catheterization laboratory. Cathet Cardiovasc Diagn. 1992;25:186–94. PubMed

Aldridge HE, Chisholm RJ, Dragatakis L, et al. Radiation safety in the cardiac catheterization laboratory. Can J Cardiol. 1997;13:459–67. PubMed

Vano E, Gonzalez L, Guibelalde E, et al. Radiation exposure to medical staff in interventional and cardiac radiology. Br J Radiol. 1998;71:954–60. PubMed

Vano E, Gonzalez L, Beneytez F, et al. Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. Br J Radiol. 1998;71:728–33. PubMed

Kim KP, Miller DL, Balter S, et al. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys. 2008;94:211–27. DOI: 10.1097/01. HP.0000290614.76386.35. PubMed

Volzke H, Werner A, Wallaschofski H, et al. Occupational exposure to ionizing radiation is associated with autoimmune thyroid disease. J Clin Endocrinol Metab. 2005;90:4587–92. PubMed

ICRP, Eckerman K, Harrison J, et al. ICRP Publication 119: Compendium of dose coefficients based on ICRP Publication 60. Ann ICRP. 2012;41(Suppl 1):1–130. DOI: 10.1016/j.icrp.2012.06.038. PubMed

Miller DL, Vano E, Bartal G, et al. Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. J Vasc Interv Radiol. 2010;21:607–15. DOI: 10.1016/j.jvir.2010.01.007. PubMed

The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37:1–332. ICRP. PubMed

Koenig TR, Mettler FA, Wagner LK. Skin injuries from fluoroscopically guided procedures: part 2, review of 73 cases and recommendations for minimizing dose delivered to patient. AJR Am J Roentgenol. 2001;177:13–20. PubMed

Wagner LK, McNeese MD, Marx MV, et al. Severe skin reactions from interventional fluoroscopy: case report and review of the literature. Radiology. 1999;213:773–6. PubMed

Koenig TR, Wolff D, Mettler FA, et al. Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am J Roentgenol. 2001;177:3–11. PubMed

Andreassi MG, Foffa I, Manfredi S, et al. Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutat Res. 2009;666:57–63. DOI: 10.1016/j.mrfmmm.2009.04.003. PubMed

Wagner LK, Eifel PJ, Geise RA. Potential biological effects following high X-ray dose interventional procedures. J Vasc Interv Radiol. 1994;5:71–84. PubMed

Buchanan GL, Chieffo A, Mehilli J, et al. The occupational effects of interventional cardiology: results from the WIN for Safety survey. EuroIntervention. 2012;8:658–63. DOI: 10.4244/EIJV8I6A103. PubMed

Ciraj-Bjelac O, Rehani MM, Sim KH, et al. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76:826–34. DOI: 10.1002/ccd.22670. PubMed

Nahass G T. Fluoroscopy and the skin: implications for radiofrequency catheter ablation. Am J Cardiol. 1995;76:174–6. PubMed

Park TH, Eichling JO, Schechtman KB, et al. Risk of radiation induced skin injuries from arrhythmia ablation procedures. Pacing Clin Electrophysiol. 1996;19:1363–9. PubMed

Authors on behalf of I, Stewart FA, Akleyev AV, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41:1–322. DOI: 10.1016/j.icrp.2012.02.001. PubMed

Valentin J. Avoidance of radiation injuries from medical interventional procedures. Ann ICRP. 2000;30:7–67. PubMed

Roguin A, Goldstein J, Bar O, et al. Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol. 2013;111:1368–72. DOI: 10.1016/j.amjcard.2012.12.060. PubMed

Nof E, Lane C, Cazalas M, et al. Reducing radiation exposure in the electrophysiology laboratory: it is more than just fluoroscopy times! Pacing Clin Electrophysiol. 2015;38:136–45. DOI: 10.1111/pace.12544. PubMed

Vano E, Gonzalez L, Fernandez JM, et al. Occupational radiation doses in interventional cardiology: a 15-year follow-up. Br J Radiol. 2006;79:383–8. PubMed

Stecker MS, Balter S, Towbin RB, et al. Guidelines for patient radiation dose management. J Vasc Interv Radiol. 2009;20::S263–73. DOI: 10.1016/j.jvir.2009.04.037. PubMed

Hamer OW, Sirlin CB, Strotzer M, et al. Chest radiography with a flat-panel detector: image quality with dose reduction after copper filtration. Radiology. 2005;237:691–700. PubMed

den Boer A, de Feyter PJ, Hummel WA, et al. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering. Circulation. 1994;89:2710–4. PubMed

Rogers D P, England F, Lozhkin K, et al. Improving safety in the electrophysiology laboratory using a simple radiation dose reduction strategy: a study of 1007 radiofrequency ablation procedures. Heart. 2011;97:366–70. DOI: 10.1136/hrt.2010.204222. PubMed

Lloyd P, Lowe D, Harty DS, et al. The secondary radiation grid; its effect on fluoroscopic dose-area product during barium enema examinations. Br J Radiol. 1998;71:303–6. PubMed

Dekker LR, van der Voort PH, Simmers TA, et al. New image processing and noise reduction technology allows reduction of radiation exposure in complex electrophysiologic interventions while maintaining optimal image quality: a randomized clinical trial. Heart Rhythm. 2013;10:1678–82. DOI: 10.1016/j.hrthm.2013.08.018. PubMed

Klein LW, Tra Y, Garratt KN, et al. Occupational health hazards of interventional cardiologists in the current decade: Results of the 2014 SCAI membership survey. Catheter Cardiovasc Interv. 2015;86:913–24. DOI: 10.1002/ccd.25927. PubMed

Walters TE, Kistler PM, Morton JB, et al. Impact of collimation on radiation exposure during interventional electrophysiology. Europace. 2012;14:1670–3. DOI: 10.1093/europace/eus095. PubMed

De Buck S, La Gerche A, Ector J, et al. Asymmetric collimation can significantly reduce patient radiation dose during pulmonary vein isolation. Europace. 2012;14:437–44. DOI: 10.1093/europace/eur346. PubMed

Kuon E, Dahm JB, Empen K, et al. Identification of less-irradiating tube angulations in invasive cardiology. J Am Coll Cardiol. 2004;44:1420–8. PubMed

Pitney MR, Allan RM, Giles RW, et al. Modifying fluoroscopic views reduces operator radiation exposure during coronary angioplasty. J Am Coll Cardiol. 1994;24:1660–3. PubMed

Agarwal S, Parashar A, Bajaj NS, et al. Relationship of beam angulation and radiation exposure in the cardiac catheterization laboratory. JACC Cardiovasc Interv. 2014;7:558–66. DOI: 10.1016/j.jcin.2013.12.203. PubMed

Guidelines for Radiation Safety in Interventional Cardiology (JCS 2006). Digest version. Circ J. 2010;74:2760–85. JCS Joint Working Group. PubMed

Gornick CC, Adler SW, Pederson B, et al. Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation. 1999;99:829–35. PubMed

Wittkampf FH, Wever EF, Derksen R, et al. LocaLisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation. 1999;99:1312–7. PubMed

Bhakta D, Miller JM. Principles of electroanatomic mapping. Indian Pacing Electrophysiol J. 2008;8:32–50. PubMed PMC

Knackstedt C, Schauerte P, Kirchhof P. Electro-anatomic mapping systems in arrhythmias. Europace. 2008;10(Suppl 3):iii28–34. DOI: 10.1093/europace/eun225. PubMed

Khongphatthanayothin A, Kosar E, Nademanee K. Nonfluoroscopic three-dimensional mapping for arrhythmia ablation: tool or toy? J Cardiovasc Electrophysiol. 2000;11:239–43. PubMed

Earley MJ, Showkathali R, Alzetani M, et al. Radiofrequency ablation of arrhythmias guided by non-fluoroscopic catheter location: a prospective randomized trial. Eur Heart J. 2006;27:1223–9. PubMed

Scaglione M, Biasco L, Caponi D, et al. Visualization of multiple catheters with electroanatomical mapping reduces X-ray exposure during atrial fibrillation ablation. Europace. 2011;13:955–62. DOI: 10.1093/europace/eur062. PubMed

Stabile G, Scaglione M, del Greco M, et al. Reduced fluoroscopy exposure during ablation of atrial fibrillation using a novel electroanatomical navigation system: a multicentre experience. Europace. 2012;14:60–5. DOI: 10.1093/europace/eur271. PubMed

Ector J, De Buck S, Loeckx D, et al. Changes in left atrial anatomy due to respiration: impact on three-dimensional image integration during atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2008;19:828–34. DOI: 10.1111/j.1540-8167.2008.01128.x. PubMed

Ector J, Loeckx D, Coudijzer W, et al. Images in cardiovascular medicine. Changes in left atrial and pulmonary venous anatomy during respiration: a 4-dimensional computed tomography-based assessment and implications for atrial fibrillation ablation. Circulation. 2007;115 :e617–9. PubMed

Pratola C, Baldo E, Artale P, et al. Different image integration modalities to guide AF ablation: impact on procedural and fluoroscopy times. Pacing Clin Electrophysiol. 2011;34:422–30. DOI: 10.1111/j.1540-8159.2010.02989.x. PubMed

Biermann J, Bode C, Asbach S. Intracardiac echocardiography during catheter-based ablation of atrial fibrillation. Cardiol Res Pract. 2012;2012:921746. DOI: 10.1155/2012/921746. PubMed PMC

Marchlinski FE, Callans D, Dixit S, et al. Efficacy and safety of targeted focal ablation versus PV isolation assisted by magnetic electroanatomic mapping. J Cardiovasc Electrophysiol. 2003;14:358–65. PubMed

Dravid SG, Hope B, McKinnie JJ. Intracardiac echocardiography in electrophysiology: a review of current applications in practice. Echocardiography. 2008;25:1172–5. DOI: 10.1111/j.1540-8175.2008.00784.x. PubMed

Burkhardt JD, Natale A. New technologies in atrial fibrillation ablation. Circulation. 2009;120:1533–41. DOI: 10.1161/CIRCULATIONAHA.109.858233. PubMed

Reddy VY, Morales G, Ahmed H, et al. Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm. 2010;7:1644–53. DOI: 10.1016/j.hrthm.2010.07.011. PubMed

Ferguson JD, Helms A, Mangrum JM, et al. Catheter ablation of atrial fibrillation without fluoroscopy using intracardiac echocardiography and electroanatomic mapping. Circ Arrhythm Electrophysiol. 2009;2:611–9. DOI: 10.1161/CIRCEP.109.872093. PubMed PMC

Shurrab M, Di Biase L, Briceno DF, et al. Impact of contact force technology on atrial fibrillation ablation: a meta-analysis. J Am Heart Assoc. 2015;4 :e002476. DOI: 10.1161/JAHA.115.002476. PubMed PMC

Sigmund E, Puererfellner H, Derndorfer M, et al. Optimizing radiofrequency ablation of paroxysmal and persistent atrial fibrillation by direct catheter force measurement-a case-matched comparison in 198 patients. Pacing Clin Electrophysiol. 2015;38:201–8. DOI: 10.1111/pace.12549. PubMed

Christoph M, Wunderlich C, Moebius S, et al. Fluoroscopy integrated 3D mapping significantly reduces radiation exposure during ablation for a wide spectrum of cardiac arrhythmias. Europace. 2015;17:928–37. DOI: 10.1093/europace/euu334. PubMed

Sommer P, Rolf S, Piorkowski C, et al. Nonfluoroscopic catheter visualization in atrial fibrillation ablation: experience from 375 consecutive procedures. Circ Arrhythm Electrophysiol. 2014;7:869–74. DOI: 10.1161/CIRCEP.114.001542. PubMed

Rolf S, Sommer P, Gaspar T, et al. Ablation of atrial fibrillation using novel 4-dimensional catheter tracking within autoregistered left atrial angiograms. Circ Arrhythm Electrophysiol. 2012;5:684–90. DOI: 10.1161/CIRCEP.112.971705. PubMed

Bourier F, Reents T, Ammar-Busch S, et al. Evaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology procedures. Europace. 2015: pii: euv364. PubMed PMC

Malliet N, Andrade JG, Khairy P, et al. Impact of a novel catheter tracking system on radiation exposure during the procedural phases of atrial fibrillation and flutter ablation. Pacing Clin Electrophysiol. 2015;38:784–90. DOI: 10.1111/pace.12611. PubMed

Aldhoon B, Wichterle D, Peichl P, et al. Successful approaches in reduction of fluoroscopy time and radiation dose during catheter ablation for atrial fibrillation. Eur Heart J. 2015;36 (Suppl 1):165. DOI:10.1093/eurheartj/ehv399.

Aldhoon B, Wichterle D, Peichl P, et al. Complications of catheter ablation for atrial fibrillation in a high-volume centre with the use of intracardiac echocardiography. Europace. 2013;15:24–32. DOI: 10.1093/europace/eus304. PubMed

Bradfield J, Tung R, Mandapati R, et al. Catheter ablation utilizing remote magnetic navigation: a review of applications and outcomes. Pacing Clin Electrophysiol. 2012;35:1021–34. DOI: 10.1111/j.1540-8159.2012.03382.x. PubMed

Di Biase L, Wang Y, Horton R, et al. Ablation of atrial fibrillation utilizing robotic catheter navigation in comparison to manual navigation and ablation: single-center experience. J Cardiovasc Electrophysiol. 2009;20:1328–35. DOI: 10.1111/j.1540-8167.2009.01570.x. PubMed

Miyazaki S, Shah AJ, Xhaet O, et al. Remote magnetic navigation with irrigated tip catheter for ablation of paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:585–9. DOI: 10.1161/CIRCEP.110.957803. PubMed

Arya A, Zaker-Shahrak R, Sommer P, et al. Catheter ablation of atrial fibrillation using remote magnetic catheter navigation: a case-control study. Europace. 2011;13:45–50. DOI: 10.1093/europace/euq344. PubMed

Luthje L, Vollmann D, Seegers J, et al. Remote magnetic versus manual catheter navigation for circumferential pulmonary vein ablation in patients with atrial fibrillation. Clin Res Cardiol. 2011;100:1003–11. DOI: 10.1007/s00392-011-0333-0. PubMed PMC

Katsiyiannis WT, Melby DP, Matelski JL, et al. Feasibility and safety of remote-controlled magnetic navigation for ablation of atrial fibrillation. Am J Cardiol. 2008;102:1674–6. DOI: 10.1016/j.amjcard.2008.08.012. PubMed

Malcolme-Lawes LC, Lim PB, Koa-Wing M, et al. Robotic assistance and general anaesthesia improve catheter stability and increase signal attenuation during atrial fibrillation ablation. Europace. 2013;15:41–7. DOI: 10.1093/europace/eus244. PubMed

Thomas D, Scholz EP, Schweizer PA, et al. Initial experience with robotic navigation for catheter ablation of paroxysmal and persistent atrial fibrillation. J Electrocardiol. 2012;45:95–101. DOI: 10.1016/j.jelectrocard.2011.05.005. PubMed

Hlivak P, Mlcochova H, Peichl P, et al. Robotic navigation in catheter ablation for paroxysmal atrial fibrillation: midterm efficacy and predictors of postablation arrhythmia recurrences. J Cardiovasc Electrophysiol. 2011;22:534–40. DOI: 10.1111/j.1540-8167.2010.01942.x. PubMed

Kautzner J, Peichl P, Cihak R, et al. Early experience with robotic navigation for catheter ablation of paroxysmal atrial fibrillation. Pacing Clin Electrophysiol. 2009;32(Suppl 1):S163–6. DOI: 10.1111/j.1540-8159.2008.02277.x. PubMed

Steven D, Servatius H, Rostock T, et al. Reduced fluoroscopy during atrial fibrillation ablation: benefits of robotic guided navigation. J Cardiovasc Electrophysiol. 2010;21:6–12. DOI: 10.1111/j.1540-8167.2009.01592.x. PubMed

Eitel C, Hindricks G, Grothoff M, et al. Catheter ablation guided by real-time MRI. Curr Cardiol Rep. 2014;16:511. DOI: 10.1007/s11886-014-0511-6. PubMed

Nazarian S, Kolandaivelu A, Zviman MM, et al. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation. 2008;118:223–9. DOI: 10.1161/CIRCULATIONAHA.107. 742452. PubMed PMC

Picano E, Vano E, Rehani MM, et al. The appropriate and justified use of medical radiation in cardiovascular imaging: a position document of the ESC Associations of Cardiovascular Imaging, Percutaneous Cardiovascular Interventions and Electrophysiology. Eur Heart J. 2014;35:665–72. DOI: 10.1093/eurheartj/eht394. PubMed

Moore WE, Ferguson G, Rohrmann C. Physical factors determining the utility of radiation safety glasses. Med Phys. 1980;7:8–12. PubMed

Pasciak AS, Jones AK. Time to take the gloves off: the use of radiation reduction gloves can greatly increase patient dose. J Appl Clin Med Phys. 2014;15:5002. DOI: 10.1120/jacmp. v15i6.5002. PubMed PMC

Kim AN, Chang YJ, Cheon BK, et al. How effective are radiation reducing gloves in C-arm fluoroscopy-guided pain interventions? Korean J Pain. 2014;27:145–51. DOI: 10.3344/kjp.2014.27.2.145. PubMed PMC

Dragusin O, Weerasooriya R, Jais P, et al. Evaluation of a radiation protection cabin for invasive electrophysiological procedures. Eur Heart J. 2007;28:183–9. PubMed

Marichal DA, Anwar T, Kirsch D, et al. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist. J Vasc Interv Radiol. 2011;22:437–42. DOI: 10.1016/j. jvir.2010.12.016. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace