Characterization of Haemophilus influenzae Strains with Non-Enzymatic Resistance to β-Lactam Antibiotics Caused by Mutations in the PBP3 Gene in the Czech Republic in 2010-2018
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-09-00028
Ministry of Health
75010330
Ministry of Health
PubMed
34833138
PubMed Central
PMC8624647
DOI
10.3390/life11111260
PII: life11111260
Knihovny.cz E-zdroje
- Klíčová slova
- Haemophilus influenzae, ftsI, non-enzymatic resistance, β-lactam antibiotics,
- Publikační typ
- časopisecké články MeSH
The surveillance data on antibiotic resistance of Haemophilus influenzae have shown that strains with non-enzymatic resistance to β-lactam antibiotics have been on the rise in the Czech Republic over the last decade. This type of resistance is more difficult to detect than β-lactamase production. Analysis of 228 H. influenzae strains revealed that isolates with non-enzymatic resistance to β-lactams due to mutations in the ftsI gene could be reliably demonstrated by single run testing of susceptibility to amoxicillin/clavulanic acid (sensitivity of detection is 84.6%), cefuroxime (92.6%), ampicillin and penicillin (both 95.7%). Thirty-seven different amino acid substitution combinations were detected in the PBP3 protein at 23 positions (V329I, D350N, S357N, A368T, M377I, S385T, A388V, L389F, P393L, A437S, I449V, G490E, I491V, R501L, A502S, A502T, A502V, V511A, R517H, I519L, N526K, A530S, and T532S). The most common combination (35%) of amino acid substitutions was the combination D350N, M377I, A502V, N526K. Epidemiological typing does not indicate a clonal spread of a particular MLST type. Altogether there has been detected 74 STs. The most prevalent ST 1034 was associated mainly with a combination D350N, M377I, A502V, N526K. Clonal analysis revealed six clonal complexes (CCs) with the founder found, eight CCs without founder and 33 singletons.
Zobrazit více v PubMed
Jordens J.Z., Slack M.P.E. Haemophilus influenzae: Then and now. Eur. J. Clin. Microbiol. Infect. Dis. 1995;14:935–948. doi: 10.1007/BF01691374. PubMed DOI
Niederman M.S., Mandell L.A., Anzueto A., Bass J.B., Broughton W.A., Campbell G.D., Dean N., File T., Fine M.J., Gross P.A., et al. Guidelines for the management of adults with community acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am. J. Respir. Crit. Care Med. 2001;163:1730–1754. doi: 10.1164/ajrccm.163.7.at1010. PubMed DOI
Medeiros A.A., O’Brien T.F. Ampicillin-resistant Haemophilus influenzae type B possessing a TEMtype beta-lactamase but little permeability barrier to ampicillin. Lancet. 1975;1:716–719. doi: 10.1016/S0140-6736(75)91630-X. PubMed DOI
Rubin L.G., Medeiros A.A., Yolken R.H., Moxon E.R. Ampicillin treatment failure of apparently beta-lactamase-negative Haemophilus influenzae type b meningitis due to novel betalactamase. Lancet. 1981;2:1008–1010. doi: 10.1016/S0140-6736(81)91214-9. PubMed DOI
Ubukata K., Shibasaki Y., Yamamoto K., Chiba N., Hasegawa K., Takeuchi Y., Sunakawa K., Inoue M., Konno M. Association of amino acid substitutions in penicillin-binding protein 3 with β-lactam resistance in β-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob. Agents Chemother. 2001;45:1693–1699. doi: 10.1128/AAC.45.6.1693-1699.2001. PubMed DOI PMC
Osaki Y., Sanbongi M., Ishikawa H., Kataoka T., Suzuki K. Genetic approach to study the relationship between penicillin-binding protein 3 mutations and Haemophilus influenzae beta-lactam resistance by using site-directed mutagenesis and gene recombinants. Antimicrob. Agents Chemother. 2005;49:2834–2839. doi: 10.1128/AAC.49.7.2834-2839.2005. PubMed DOI PMC
Matic V., Bozdogan B., Jacobs M.R., Ubukata K., Appelbaum P.C. Contribution of beta-lactamase and PBP amino acid substitutions to amoxicillin/clavulanate resistance in beta-lactamase-positive, amoxicillin/clavulanate-resistant Haemophilus influenzae. J. Antimicrob. Chemother. 2003;52:1018–1021. doi: 10.1093/jac/dkg474. PubMed DOI
Dabernat H., Delmas C., Seguy M., Pelissier R., Faucon G., Bennamani S., Pasquier C. Diversity of beta-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae. Antimicrob. Agents Chemother. 2002;46:2208–2218. doi: 10.1128/AAC.46.7.2208-2218.2002. PubMed DOI PMC
Kaczmarek F.S., Gootz T.D., Dib-Hajj F., Shang W., Hallowell S., Cronan M. Genetic and molecular characterization of beta-lactamasenegative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob. Agents Chemother. 2004;48:1630–1639. doi: 10.1128/AAC.48.5.1630-1639.2004. PubMed DOI PMC
Skaare D., Allum A.G., Anthonisen I.L., Jenkins A., Lia A., Strand L., Tveten Y., Kristiansen B.E. Mutant ftsI genes in the emergence of penicillin-binding protein-mediated beta-lactam resistance in Haemophilus influenzae in Norway. Clin. Microbiol. Infect. 2010;16:1117–1124. doi: 10.1111/j.1469-0691.2009.03052.x. PubMed DOI
Resman F., Ristovski M., Forsgren A., Kaijser B., Kronvall G., Medstrand P., Melander E., Odenholt I., Riesbeck K. Increase of beta-lactam-resistant invasive Haemophilus influenzae in Sweden, 1997 to 2010. Antimicrob. Agents Chemother. 2012;56:4408–4415. doi: 10.1128/AAC.00415-12. PubMed DOI PMC
Dabernat H., Delmas C. Epidemiology and evolution of antibiotic resistance of Haemophilus influenzae in children 5 years of age or less in France, 2001–2008: A retrospective database analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31:2745–2753. doi: 10.1007/s10096-012-1623-9. PubMed DOI
Witherden E.A., Montgomery J., Henderson B., Tristram S.G. Prevalence and genotypic characteristics of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae in Australia. J. Antimicrob. Chemother. 2011;66:1013–1015. doi: 10.1093/jac/dkr035. PubMed DOI
Respirační Patogeny [(accessed on 21 March 2020)]. Available online: https://apps.szu.cz/rp/respiracni_patogeny.php.
Jakubů V., Urbášková P., Žemličková H. First detection of cefotaxime-resistant strains of Haemophilus influenzae. Zpr. Cent. Epidemiol. Mikrobiol. 2015;24:387–388.
Aguirre-Quiñonero A., Pérez del Molino I.C., García de la Fuente C., Sanjuán M.C., Agüero J., Martínez-Martínez L. Phenotypic detection of clinical isolates of Haemophilus influenzae with altered penicillin-binding protein 3. Eur. J. Clin. Microbiol. Infect. Dis. 2018;37:1475–1480. doi: 10.1007/s10096-018-3273-z. PubMed DOI
Norskov-Lauritsen N., Ridderberg W., Erikstrup L.T., Fuursted K. Evaluation of disk diffusion methods to detect low-level β-lactamase-negative ampicillin-resistant Haemophilus influenzae. APMIS. 2011;119:385–392. doi: 10.1111/j.1600-0463.2011.02745.x. PubMed DOI
Barry A.L., Fuchs P.C., Brown S.D. Identification of β-Lactamase-Negative, Ampicillin-Resistant Strains of Haemophilus influenzae with Four Methods and Eight Media. Antimicrob. Agents Chemother. 2001;45:1585–1588. doi: 10.1128/AAC.45.5.1585-1588.2001. PubMed DOI PMC
Schotte L., Wautier M., Martiny D., Piérard D., Depypere M. Detection of beta-lactamase-negative ampicillin resistance in Haemophilus influenzae in Belgium. Diagn. Microbiol. Infect. Dis. 2019;93:243–249. doi: 10.1016/j.diagmicrobio.2018.10.009. PubMed DOI
Barbosa A.R., Giufre M., Cerquetti M., Bajanca-Lavado M.P. Polymorphism in ftsI gene and beta-lactam susceptibility in Portuguese Haemophilus influenzae strains: Clonal dissemination of beta-lactamase-positive isolates with decreased susceptibility to amoxicillin/clavulanic acid. J. Antimicrob. Chemother. 2011;66:788–796. doi: 10.1093/jac/dkq533. PubMed DOI PMC
Kishii K., Chiba N., Morozumi M., Hamano-Hasegawa K., Kurokawa I., Masaki J., Ubukata K. Diverse mutations in the ftsI gene in ampicillin-resistant Haemophilus influenzae isolates from pediatric patients with acute otitis media. J. Infect. Chemother. 2010;16:87–93. doi: 10.1007/s10156-009-0011-6. PubMed DOI
Garcia-Cobos S., Campos J., Lazaro E., Roman F., Cercenado E., Garcia-Rey C., Perez-Vazquez M., Oteo J., Abajo F.d. Ampicillin-resistant non-beta-lactamaseproducing Haemophilus influenzae in Spain: Recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob. Agents Chemother. 2007;51:2564–2573. doi: 10.1128/AAC.00354-07. PubMed DOI PMC
Mizoguchi A., Hitomi S. Cefotaxime-non-susceptibility of Haemophilus influenzae induced by additional amino acid substitutions of G555E and Y557H in altered penicillin-binding protein 3. J. Infect. Chemother. 2019;25:509–513. doi: 10.1016/j.jiac.2019.02.010. PubMed DOI
Tristram S., Jacobs M.R., Appelbaum P.C. Antimicrobial resistance in Haemophilus influenzae. Clin. Microbiol. Rev. 2007;20:368–389. doi: 10.1128/CMR.00040-06. PubMed DOI PMC
Ubukata K., Chiba N., Morozumi M., Iwata S., Sunakawa K. Longitudinal surveillance of Haemophilus influenzae isolates from pediatric patients with meningitis throughout Japan, 2000–2011. J. Infect. Chemother. 2013;19:34–41. doi: 10.1007/s10156-012-0448-x. PubMed DOI
Park C., Kim K.H., Shin N.Y., Byun J.H., Kwon E.Y., Lee J.W., Kwon H.J., Choi E.Y., Lee D.G., Sohn W.Y., et al. Genetic diversity of the ftsI gene in beta-lactamase-nonproducing ampicillin-resistant and beta-lactamaseproducing amoxicillin-/clavulanic acid-resistant nasopharyngeal Haemophilus influenzae strains isolated from children in South Korea. Microb. Drug Resist. 2013;19:224–230. doi: 10.1089/mdr.2012.0116. PubMed DOI
Skaare D., Anthonisen I.L., Kahlmeter G., Matuschek E., Natås O.B., Steinbakk M., Sundsfjord A., Kristiansen B.E. Emergence of clonally related multidrug resistant Haemophilus influenzae with penicillin-binding protein 3-mediated resistance to extended-spectrum cephalosporins, Norway, 2006 to 2013. Eurosurveillance. 2014;19:20986. doi: 10.2807/1560-7917.ES2014.19.49.20986. PubMed DOI
Skaare D., Anthonisen I.L., Caugant D.A., Jenkins A., Steinbakk M., Strand L., Sundsfjord A., Tveten Y., Kristiansen B.E. Multilocus sequence typing and ftsI sequencing: A powerful tool for surveillance of penicillin-binding protein 3-mediated beta-lactam resistance in nontypeable Haemophilus influenzae. BMC Microbiol. 2014;14:131–147. doi: 10.1186/1471-2180-14-131. PubMed DOI PMC
Giufrè M., Fabiani M., Cardines R., Riccardo F., Caporali M.G., D’Ancona F., Pezzotti P., Cerquetti M. Increasing trend in invasive non-typeable Haemophilus influenzae disease and molecular characterization of the isolates, Italy, 2012–2016. Vaccine. 2018;36:6615–6622. doi: 10.1016/j.vaccine.2018.09.060. PubMed DOI
García-Cobos S., Arroyo M., Pérez-Vázquez M., Aracil B., Lara N., Oteo J., Cercenado E., Campos J. Isolates of b-lactamase-negative ampicillin-resistant Haemophilus influenzae causing invasive infections in Spain remain susceptible to cefotaxime and imipenem. J. Antimicrob. Chemother. 2014;69:111–116. doi: 10.1093/jac/dkt324. PubMed DOI
Hotomi M., Fujihara K., Billal D.S., Suzuki K., Nishimura T., Baba S., Yamanaka N. Genetic characteristics and clonal dissemination of beta-lactamase non-producing ampicillin-resistant (BLNAR) Haemophilus influenzae isolated from the upper respiratory tract in Japan. Antimicrob. Agents Chemother. 2007;51:3969–3976. doi: 10.1128/AAC.00422-07. PubMed DOI PMC
Honda H., Sato T., Shinagawa M., Fukushima Y., Nakajima C., Suzuki Y., Shiraishi T., Kuronuma K., Takahashi S., Takahashi H., et al. Multiclonal Expansion and High Prevalence of Lactamase-Negative Haemophilus influenzae with High-Level Ampicillin Resistance in Japan and Susceptibility to Quinolones. Antimicrob. Agents Chemother. 2018;62:e00851. doi: 10.1128/AAC.00851-18. PubMed DOI PMC
Thegerström J., Matuschek E., Su Y.C., Riesbeck K., Resman F. A novel PBP3 substitution in Haemophilus influenzae confers reduced aminopenicillin susceptibility. BMC Microbiol. 2018;18:48–55. doi: 10.1186/s12866-018-1196-6. PubMed DOI PMC
The European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0. 2020. [(accessed on 20 May 2020)]. Available online: http://www.eucast.org.
Montgomery K., Raymundo L., Drew W.L. Chromogenic cephalosporin spot test to detect β-lactamase in clinically significant bacteria. J. Clin. Microbiol. 1979;9:205–207. doi: 10.1128/jcm.9.2.205-207.1979. PubMed DOI PMC
Tristram S., Nichols S. A multiplex PCR for beta-lactamase genes of Haemophilus influenzae and description of a new blaTEM promoter variant. J. Antimicrob. Chemother. 2005;58:183–185. doi: 10.1093/jac/dkl150. PubMed DOI
Public Databases for Molecular Typing and Microbial Genome Diversity [(accessed on 11 December 2018)]. Available online: https://pubmlst.org/static/organisms/haemophilus-influenzae/ftsI_sequencing_protocol_v3_01-02-2014.pdf.
Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F., Kerlavage A.R., Bult C.J., Tomb J.F., Dougherty B.A., Merrick J.M., et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995;269:496–512. doi: 10.1126/science.7542800. PubMed DOI
Meats E., Feil E.J., Stringer S., Cody A.J., Goldstein R., Kroll J.S., Popovic T., Spratt B.G. Characterization of Encapsulated and Noncapsulated Haemophilus influenzae and Determination of Phylogenetic Relationships by Multilocus Sequence Typing. J. Clin. Microbiol. 2003;41:1623–1636. doi: 10.1128/JCM.41.4.1623-1636.2003. PubMed DOI PMC
Francisco A.P., Bugalho M., Ramirez M., Carriço J.A. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinform. 2009;10:152–167. doi: 10.1186/1471-2105-10-152. PubMed DOI PMC