Amino acid substitutions in PBP3 in Haemophilus influenzae strains, their phenotypic detection and impact on resistance to β-lactams

. 2025 Apr 02 ; 80 (4) : 980-987.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39895369

Grantová podpora
Czech Health Research Council
NU21-09-00028) Ministry of Health of the Czech Republic

BACKGROUND: Data from surveillance on antibiotic resistance have shown an increasing prevalence of non-enzymatic resistance (β-lactamase-negative ampicillin-resistant) to β-lactam antibiotics among H. influenzae strains in the Czech Republic. Aminopenicillins are recommended agents for non-invasive Haemophilus influenzae infections. The phenomenon of non-enzymatic resistance to β-lactams is complicated by the fact that the phenotypic detection of PBP3 with specific amino acid substitutions (rPBP3) is challenging, since rPBP3 isolates have repeatedly been demonstrated to be split by the epidemiological cut-off values (ECOFF) for aminopenicillins defined by EUCAST. OBJECTIVES: We sought to determine whether the penicillin disc has sufficient detection ability to predict the non-enzymatic mechanism; whether other antibiotics can be used for detection; and what is the agreement between the broth microdilution and disc diffusion methods. METHODS: We undertook susceptibility testing of selected antibiotics according to EUCAST of 153 rPBP3 strains, and sequencing of the ftsI gene to determination amino acid substitutions. RESULTS: For a selected set of rPBP strains: (i) the detection capability for penicillin, ampicillin, cefuroxime and amoxicillin/clavulanate was found to be 91.5%, 94.4%, 89.5% and 70.6%, respectively; (ii) the categorical agreement between the disc diffusion method and the MIC for ampicillin and cefuroxime was 71.1% and 83.8%, respectively. CONCLUSIONS: We observed better recognition of rPBP3 strains by the ampicillin disc than by the penicillin disc. There is frequently a discrepancy in the interpretation of susceptibility results between the methods used.

Zobrazit více v PubMed

Jordens  J, Slack  M.  Haemophilus influenzae: then and now. Eur J Clin Microbiol Infect Dis  1995; 14: 935–48. doi:10.1007/BF01691374 PubMed DOI

MacNeil  J, Cohn  A, Farley  M  et al.  Current epidemiology and trends in invasive Haemophilus influenzae disease—United States, 1989–2008. Clin Infect Dis  2011; 53: 1230–6. 10.1093/cid/cir735 PubMed DOI

Slack  M, Cripps  A, Grimwood  K  et al.  Invasive Haemophilus influenzae infections after 3 decades of Hib protein conjugate vaccine use. Clin Microbiol Rev  2021; 34: e0002821. 10.1128/CMR.00028-21 PubMed DOI PMC

Lebedová  V, Šebestová  H, Musílek  M  et al.  Závažná onemocnění způsobená Haemophilus influenzae v České republice v období 2009–2020. Zprávy Centra Epidemiologie a Mikrobiologie  2021; 30: 149–56.

Niederman  M, Mandell  L, Anzueto  A  et al.  Guidelines for the management of adults with community-acquired pneumonia. Am J Respir Crit Care Med  2001; 163: 1730–54. 10.1164/ajrccm.163.7.at1010 PubMed DOI

Matic  V. Contribution of beta-lactamase and PBP amino acid substitutions to amoxicillin/clavulanate resistance in beta-lactamase-positive, amoxicillin/clavulanate-resistant Haemophilus influenzae. J Antimicrob Chemother  2003; 52: 1018–21. 10.1093/jac/dkg474 PubMed DOI

Medeiros  A, O'Brien  T. Ampicillin-resistant Haemophilus influenzae type b possessing a TEM-type beta-lactamase but little permeability barrier to ampicillin. Lancet  1975; 305: 716–9. 10.1016/S0140-6736(75)91630-X PubMed DOI

Mendelman  P, Chaffin  D, Clausen  C  et al.  A failure to detect ampicillin-resistant, non-beta-lactamase-producing Haemophilus influenzae by standard disk susceptibility testing. Antimicrob Agents Chemother  1986; 30: 274–80. 10.1128/AAC.30.2.274 PubMed DOI PMC

Mendelman  P, Chaffin  D, Kalaitzoglou  G. Penicillin-binding proteins and ampicillin resistance in Haemophilus influenzae. J Antimicrob Chemother  1990; 25: 525–34. 10.1093/jac/25.4.525 PubMed DOI

Ubukata  K, Shibasaki  Y, Yamamoto  K  et al.  Association of amino acid substitutions in penicillin-binding protein 3 with β-lactam resistance in β-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother  2001; 45: 1693–9. 10.1128/AAC.45.6.1693-1699.2001 PubMed DOI PMC

García-Cobos  S, Campos  J, Lázaro  E  et al.  Ampicillin-resistant non-β-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother  2007; 51: 2564–73. 10.1128/AAC.00354-07 PubMed DOI PMC

Osaki  Y, Sanbongi  Y, Ishikawa  M  et al.  Genetic approach to study the relationship between penicillin-binding protein 3 mutations and Haemophilus influenzae β-lactam resistance by using site-directed mutagenesis and gene recombinants. Antimicrob Agents Chemother  2005; 49: 2834–9. 10.1128/AAC.49.7.2834-2839.2005 PubMed DOI PMC

Skaare  D, Allum  A, Anthonisen  I  et al.  Mutant ftsI genes in the emergence of penicillin-binding protein mediated β-lactam resistance in Haemophilus influenzae in Norway. Clin Microbiol Infect  2010; 16: 1117–24. 10.1111/j.1469-0691.2009.03052.x PubMed DOI

Giufrè  M, Fabiani  M, Cardines  R  et al.  Increasing trend in invasive non-typeable Haemophilus influenzae disease and molecular characterization of the isolates, Italy, 2012–2016. Vaccine  2018; 36: 6615–22. 10.1016/j.vaccine.2018.09.060 PubMed DOI

Honda  H, Sato  T, Shinagawa  M  et al.  Multiclonal expansion and high prevalence of β-lactamase-negative Haemophilus influenzae with high-level ampicillin resistance in Japan and susceptibility to quinolones. Antimicrob Agents Chemother  2018; 62: e00851-18. 10.1128/AAC.00851-18 PubMed DOI PMC

Hotomi  M, Fujihara  K, Billal  D  et al.  Genetic characteristics and clonal dissemination of β-lactamase-negative ampicillin-resistant Haemophilus influenzae strains isolated from the upper respiratory tract of patients in Japan. Antimicrob Agents Chemother  2007; 51: 3969–76. 10.1128/AAC.00422-07 PubMed DOI PMC

Jakubu  V, Malisova  L, Musilek  M  et al.  Characterization of Haemophilus influenzae strains with non-enzymatic resistance to β-lactam antibiotics caused by mutations in the PBP3 gene in the Czech Republic in 2010–2018. Life  2021; 11: 1260. 10.3390/life11111260 PubMed DOI PMC

Lâm  T, Claus  H, Elias  J  et al.  Ampicillin resistance of invasive Haemophilus influenzae isolates in Germany 2009–2012. Int J Med Microbiol  2015; 305: 748–55. 10.1016/j.ijmm.2015.08.028 PubMed DOI

Lâm  T, Nürnberg  S, Claus  H  et al.  Molecular epidemiology of imipenem resistance in invasive Haemophilus influenzae infections in Germany in 2016. J Antimicrob Chemother  2020; 75: 2076–86. 10.1093/jac/dkaa159 PubMed DOI

Nørskov-Lauritsen  N, Pedersen  N, Lam  J  et al.  Haemophilus influenzae one day in Denmark: prevalence, circulating clones, and dismal resistance to aminopenicillins. Eur J Clin Microbiol Infect Dis  2021; 40: 2077–85. 10.1007/s10096-021-04247-w PubMed DOI

Schotte  L, Wautier  M, Martiny  D  et al.  Detection of beta-lactamase-negative ampicillin resistance in Haemophilus influenzae in Belgium. Diagn Microbiol Infect Dis  2019; 93: 243–9. 10.1016/j.diagmicrobio.2018.10.009 PubMed DOI

Søndergaard  A, Nørskov-Lauritsen  N. Contribution of PBP3 substitutions and TEM-1, TEM-15, and ROB-1 beta-lactamases to cefotaxime resistance in Haemophilus influenzae and Haemophilus parainfluenzae. Microb Drug Resist  2016; 22: 247–52. 10.1089/mdr.2015.0189 PubMed DOI

Skaare  D, Anthonisen  I, Kahlmeter  G  et al.  Emergence of clonally related multidrug resistant Haemophilus influenzae with penicillin-binding protein 3-mediated resistance to extended-spectrum cephalosporins, Norway, 2006 to 2013. Euro Surveill  2014; 19: 20986. 10.2807/1560-7917.ES2014.19.49.20986 PubMed DOI

Nørskov-Lauritsen  N, Ridderberg  W, Erikstrup  LT  et al.  Evaluation of disk diffusion methods to detect low-level β-lactamase-negative ampicillin-resistant Haemophilus influenzae. APMIS  2011; 119: 385–92. 10.1111/j.1600-0463.2011.02745.x PubMed DOI

EUCAST . Breakpoint tables for interpretation of MICs and zone diameters. Version 13.0, 2023. http://www.eucast.org

Skaare  D, Lia  A, Hannisdal  A  et al.  Haemophilus influenzae with non-beta-lactamase-mediated beta-lactam resistance: easy to find but hard to categorize. J Clin Microbiol  2015; 53: 3589–95. 10.1128/JCM.01630-15 PubMed DOI PMC

García-Cobos  S, Campos  J, Román  F  et al.  Low β-lactamase-negative ampicillin-resistant Haemophilus influenzae strains are best detected by testing amoxicillin susceptibility by the broth microdilution method. Antimicrob Agents Chemother  2008; 52: 2407–14. 10.1128/AAC.00214-08 PubMed DOI PMC

Kahlmeter  G, Turnidge  J. How to: ECOFFs—the why, the how, and the don'ts of EUCAST epidemiological cutoff values. Clin Microbiol Infect  2022; 28: 952–4. 10.1016/j.cmi.2022.02.024 PubMed DOI

EUCAST . Antimicrobial wild type distributions of microorganisms. 2009. https://mic.eucast.org/search/? search%5Bmethod%5D=mic&search%5Bantibiotic%5D=-1&search%5Bspecies%5D=275&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50

Jorgensen  J, Redding  J, Maher  L  et al.  Improved medium for antimicrobial susceptibility testing of Haemophilus influenzae. J Clin Microbiol  1987; 25: 2105–13. 10.1128/jcm.25.11.2105-2113.1987 PubMed DOI PMC

Matuschek  E, Brown  D, Kahlmeter  G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect  2014; 20: O255–66. 10.1111/1469-0691.12373 PubMed DOI

Åhman  J, Matuschek  E, Kahlmeter  G. EUCAST evaluation of 21 brands of Mueller–Hinton dehydrated media for disc diffusion testing. Clin Microbiol Infect  2020; 26: 1412.e1–.e5. 10.1016/j.cmi.2020.01.018 PubMed DOI

Mizoguchi  A, Hitomi  S. Cefotaxime-non-susceptibility of Haemophilus influenzae induced by additional amino acid substitutions of G555E and Y557H in altered penicillin-binding protein 3. J Infect Chemother  2019; 25: 509–13. 10.1016/j.jiac.2019.02.010 PubMed DOI

Bellini  D, Koekemoer  L, Newman  H  et al.  Novel and improved crystal structures of H. influenzae, E. coli and P. aeruginosa penicillin-binding protein 3 (PBP3) and N. gonorrhoeae PBP2: toward a better understanding of β-lactam target-mediated resistance. J Mol Biol  2019; 431: 3501–19. 10.1016/j.jmb.2019.07.010 PubMed DOI

Kaczmarek  F, Gootz  T, Dib-Hajj  F  et al.  Genetic and molecular characterization of β-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother  2004; 48: 1630–9. 10.1128/AAC.48.5.1630-1639.2004 PubMed DOI PMC

National Institute of Public Health . Respirační Patogeny. Haemophilus influenzae. 1996. https://apps.szu.cz/rp/

Aguirre-Quiñonero  A, Pérez Del Molino  IC, de la Fuente  CG  et al.  Phenotypic detection of clinical isolates of Haemophilus influenzae with altered penicillin-binding protein 3. Eur J Clin Microbiol Infect Dis  2018; 37: 1475–80. 10.1007/s10096-018-3273-z PubMed DOI

Montgomery  K, Raymundo  L, Drew  W. Chromogenic cephalosporin spot test to detect beta-lactamase in clinically significant bacteria. J Clin Microbiol  1979; 9: 205–7. 10.1128/jcm.9.2.205-207.1979 PubMed DOI PMC

Tristram  S. A multiplex PCR for beta-lactamase genes of Haemophilus influenzae and description of a new blaTEM promoter variant. J Antimicrob Chemother  2006; 58: 183–5. 10.1093/jac/dkl150 PubMed DOI

PUBMLST . ftsI sequencing protocol v3. 2014. https://pubmlst.org/static/organisms/haemophilus-influenzae/ftsI_sequencing_protocol_v3_01-02-2014.pdf

Barry  A, Packer  R. Performance of Haemophilus test media prepared with 12 different lots of Mueller-Hinton agar from four manufacturers. J Clin Microbiol  1992; 30: 1145–7. 10.1128/jcm.30.5.1145-1147.1992 PubMed DOI PMC

CLSI . Development of in Vitro Susceptibility Testing Criteria and Quality Control Parameters—Third Edition: M23-A3. 2008.

McHugh  ML. Interrater reliability: the kappa statistic. Biochem Med  2012; 22: 276–82. 10.11613/BM.2012.031 PubMed DOI PMC

Andrews  J. Determination of minimum inhibitory concentrations. J Antimicrob Chemother  2001; 48: 5–16. 10.1093/jac/48.suppl_1.5 PubMed DOI

Qureshi  M, Asad  I, Chaudhary  A  et al.  Beta-lactamase-negative ampicillin-resistant Haemophilus influenzae type b meningitis in partially immunized immunocompetent child: a case report. J Med Case Rep  2021; 15: 433. 10.1186/s13256-021-03041-8 PubMed DOI PMC

Jakubu  V, Vrbova  I, Bitar  I  et al.  Evolution of mutations in the ftsI gene leading to amino acid substitutions in PBP3 in Haemophilus influenzae strains under the selective pressure of ampicillin and cefuroxime. Int J Med Microbiol  2024; 316: 151626. doi:10.1016/j.ijmm.2024.151626 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...