Amino acid substitutions in PBP3 in Haemophilus influenzae strains, their phenotypic detection and impact on resistance to β-lactams
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Czech Health Research Council
NU21-09-00028)
Ministry of Health of the Czech Republic
PubMed
39895369
PubMed Central
PMC11962375
DOI
10.1093/jac/dkaf023
PII: 7997094
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky * farmakologie MeSH
- beta-laktamová rezistence * genetika MeSH
- beta-laktamy * farmakologie MeSH
- Haemophilus influenzae * genetika účinky léků MeSH
- hemofilové infekce mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- proteiny vázající penicilin * genetika MeSH
- sekvenční analýza DNA MeSH
- substituce aminokyselin * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antibakteriální látky * MeSH
- beta-laktamy * MeSH
- proteiny vázající penicilin * MeSH
BACKGROUND: Data from surveillance on antibiotic resistance have shown an increasing prevalence of non-enzymatic resistance (β-lactamase-negative ampicillin-resistant) to β-lactam antibiotics among H. influenzae strains in the Czech Republic. Aminopenicillins are recommended agents for non-invasive Haemophilus influenzae infections. The phenomenon of non-enzymatic resistance to β-lactams is complicated by the fact that the phenotypic detection of PBP3 with specific amino acid substitutions (rPBP3) is challenging, since rPBP3 isolates have repeatedly been demonstrated to be split by the epidemiological cut-off values (ECOFF) for aminopenicillins defined by EUCAST. OBJECTIVES: We sought to determine whether the penicillin disc has sufficient detection ability to predict the non-enzymatic mechanism; whether other antibiotics can be used for detection; and what is the agreement between the broth microdilution and disc diffusion methods. METHODS: We undertook susceptibility testing of selected antibiotics according to EUCAST of 153 rPBP3 strains, and sequencing of the ftsI gene to determination amino acid substitutions. RESULTS: For a selected set of rPBP strains: (i) the detection capability for penicillin, ampicillin, cefuroxime and amoxicillin/clavulanate was found to be 91.5%, 94.4%, 89.5% and 70.6%, respectively; (ii) the categorical agreement between the disc diffusion method and the MIC for ampicillin and cefuroxime was 71.1% and 83.8%, respectively. CONCLUSIONS: We observed better recognition of rPBP3 strains by the ampicillin disc than by the penicillin disc. There is frequently a discrepancy in the interpretation of susceptibility results between the methods used.
Zobrazit více v PubMed
Jordens J, Slack M. Haemophilus influenzae: then and now. Eur J Clin Microbiol Infect Dis 1995; 14: 935–48. doi:10.1007/BF01691374 PubMed DOI
MacNeil J, Cohn A, Farley M et al. Current epidemiology and trends in invasive Haemophilus influenzae disease—United States, 1989–2008. Clin Infect Dis 2011; 53: 1230–6. 10.1093/cid/cir735 PubMed DOI
Slack M, Cripps A, Grimwood K et al. Invasive Haemophilus influenzae infections after 3 decades of Hib protein conjugate vaccine use. Clin Microbiol Rev 2021; 34: e0002821. 10.1128/CMR.00028-21 PubMed DOI PMC
Lebedová V, Šebestová H, Musílek M et al. Závažná onemocnění způsobená Haemophilus influenzae v České republice v období 2009–2020. Zprávy Centra Epidemiologie a Mikrobiologie 2021; 30: 149–56.
Niederman M, Mandell L, Anzueto A et al. Guidelines for the management of adults with community-acquired pneumonia. Am J Respir Crit Care Med 2001; 163: 1730–54. 10.1164/ajrccm.163.7.at1010 PubMed DOI
Matic V. Contribution of beta-lactamase and PBP amino acid substitutions to amoxicillin/clavulanate resistance in beta-lactamase-positive, amoxicillin/clavulanate-resistant Haemophilus influenzae. J Antimicrob Chemother 2003; 52: 1018–21. 10.1093/jac/dkg474 PubMed DOI
Medeiros A, O'Brien T. Ampicillin-resistant Haemophilus influenzae type b possessing a TEM-type beta-lactamase but little permeability barrier to ampicillin. Lancet 1975; 305: 716–9. 10.1016/S0140-6736(75)91630-X PubMed DOI
Mendelman P, Chaffin D, Clausen C et al. A failure to detect ampicillin-resistant, non-beta-lactamase-producing Haemophilus influenzae by standard disk susceptibility testing. Antimicrob Agents Chemother 1986; 30: 274–80. 10.1128/AAC.30.2.274 PubMed DOI PMC
Mendelman P, Chaffin D, Kalaitzoglou G. Penicillin-binding proteins and ampicillin resistance in Haemophilus influenzae. J Antimicrob Chemother 1990; 25: 525–34. 10.1093/jac/25.4.525 PubMed DOI
Ubukata K, Shibasaki Y, Yamamoto K et al. Association of amino acid substitutions in penicillin-binding protein 3 with β-lactam resistance in β-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother 2001; 45: 1693–9. 10.1128/AAC.45.6.1693-1699.2001 PubMed DOI PMC
García-Cobos S, Campos J, Lázaro E et al. Ampicillin-resistant non-β-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother 2007; 51: 2564–73. 10.1128/AAC.00354-07 PubMed DOI PMC
Osaki Y, Sanbongi Y, Ishikawa M et al. Genetic approach to study the relationship between penicillin-binding protein 3 mutations and Haemophilus influenzae β-lactam resistance by using site-directed mutagenesis and gene recombinants. Antimicrob Agents Chemother 2005; 49: 2834–9. 10.1128/AAC.49.7.2834-2839.2005 PubMed DOI PMC
Skaare D, Allum A, Anthonisen I et al. Mutant ftsI genes in the emergence of penicillin-binding protein mediated β-lactam resistance in Haemophilus influenzae in Norway. Clin Microbiol Infect 2010; 16: 1117–24. 10.1111/j.1469-0691.2009.03052.x PubMed DOI
Giufrè M, Fabiani M, Cardines R et al. Increasing trend in invasive non-typeable Haemophilus influenzae disease and molecular characterization of the isolates, Italy, 2012–2016. Vaccine 2018; 36: 6615–22. 10.1016/j.vaccine.2018.09.060 PubMed DOI
Honda H, Sato T, Shinagawa M et al. Multiclonal expansion and high prevalence of β-lactamase-negative Haemophilus influenzae with high-level ampicillin resistance in Japan and susceptibility to quinolones. Antimicrob Agents Chemother 2018; 62: e00851-18. 10.1128/AAC.00851-18 PubMed DOI PMC
Hotomi M, Fujihara K, Billal D et al. Genetic characteristics and clonal dissemination of β-lactamase-negative ampicillin-resistant Haemophilus influenzae strains isolated from the upper respiratory tract of patients in Japan. Antimicrob Agents Chemother 2007; 51: 3969–76. 10.1128/AAC.00422-07 PubMed DOI PMC
Jakubu V, Malisova L, Musilek M et al. Characterization of Haemophilus influenzae strains with non-enzymatic resistance to β-lactam antibiotics caused by mutations in the PBP3 gene in the Czech Republic in 2010–2018. Life 2021; 11: 1260. 10.3390/life11111260 PubMed DOI PMC
Lâm T, Claus H, Elias J et al. Ampicillin resistance of invasive Haemophilus influenzae isolates in Germany 2009–2012. Int J Med Microbiol 2015; 305: 748–55. 10.1016/j.ijmm.2015.08.028 PubMed DOI
Lâm T, Nürnberg S, Claus H et al. Molecular epidemiology of imipenem resistance in invasive Haemophilus influenzae infections in Germany in 2016. J Antimicrob Chemother 2020; 75: 2076–86. 10.1093/jac/dkaa159 PubMed DOI
Nørskov-Lauritsen N, Pedersen N, Lam J et al. Haemophilus influenzae one day in Denmark: prevalence, circulating clones, and dismal resistance to aminopenicillins. Eur J Clin Microbiol Infect Dis 2021; 40: 2077–85. 10.1007/s10096-021-04247-w PubMed DOI
Schotte L, Wautier M, Martiny D et al. Detection of beta-lactamase-negative ampicillin resistance in Haemophilus influenzae in Belgium. Diagn Microbiol Infect Dis 2019; 93: 243–9. 10.1016/j.diagmicrobio.2018.10.009 PubMed DOI
Søndergaard A, Nørskov-Lauritsen N. Contribution of PBP3 substitutions and TEM-1, TEM-15, and ROB-1 beta-lactamases to cefotaxime resistance in Haemophilus influenzae and Haemophilus parainfluenzae. Microb Drug Resist 2016; 22: 247–52. 10.1089/mdr.2015.0189 PubMed DOI
Skaare D, Anthonisen I, Kahlmeter G et al. Emergence of clonally related multidrug resistant Haemophilus influenzae with penicillin-binding protein 3-mediated resistance to extended-spectrum cephalosporins, Norway, 2006 to 2013. Euro Surveill 2014; 19: 20986. 10.2807/1560-7917.ES2014.19.49.20986 PubMed DOI
Nørskov-Lauritsen N, Ridderberg W, Erikstrup LT et al. Evaluation of disk diffusion methods to detect low-level β-lactamase-negative ampicillin-resistant Haemophilus influenzae. APMIS 2011; 119: 385–92. 10.1111/j.1600-0463.2011.02745.x PubMed DOI
EUCAST . Breakpoint tables for interpretation of MICs and zone diameters. Version 13.0, 2023. http://www.eucast.org
Skaare D, Lia A, Hannisdal A et al. Haemophilus influenzae with non-beta-lactamase-mediated beta-lactam resistance: easy to find but hard to categorize. J Clin Microbiol 2015; 53: 3589–95. 10.1128/JCM.01630-15 PubMed DOI PMC
García-Cobos S, Campos J, Román F et al. Low β-lactamase-negative ampicillin-resistant Haemophilus influenzae strains are best detected by testing amoxicillin susceptibility by the broth microdilution method. Antimicrob Agents Chemother 2008; 52: 2407–14. 10.1128/AAC.00214-08 PubMed DOI PMC
Kahlmeter G, Turnidge J. How to: ECOFFs—the why, the how, and the don'ts of EUCAST epidemiological cutoff values. Clin Microbiol Infect 2022; 28: 952–4. 10.1016/j.cmi.2022.02.024 PubMed DOI
EUCAST . Antimicrobial wild type distributions of microorganisms. 2009. https://mic.eucast.org/search/? search%5Bmethod%5D=mic&search%5Bantibiotic%5D=-1&search%5Bspecies%5D=275&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50
Jorgensen J, Redding J, Maher L et al. Improved medium for antimicrobial susceptibility testing of Haemophilus influenzae. J Clin Microbiol 1987; 25: 2105–13. 10.1128/jcm.25.11.2105-2113.1987 PubMed DOI PMC
Matuschek E, Brown D, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 2014; 20: O255–66. 10.1111/1469-0691.12373 PubMed DOI
Åhman J, Matuschek E, Kahlmeter G. EUCAST evaluation of 21 brands of Mueller–Hinton dehydrated media for disc diffusion testing. Clin Microbiol Infect 2020; 26: 1412.e1–.e5. 10.1016/j.cmi.2020.01.018 PubMed DOI
Mizoguchi A, Hitomi S. Cefotaxime-non-susceptibility of Haemophilus influenzae induced by additional amino acid substitutions of G555E and Y557H in altered penicillin-binding protein 3. J Infect Chemother 2019; 25: 509–13. 10.1016/j.jiac.2019.02.010 PubMed DOI
Bellini D, Koekemoer L, Newman H et al. Novel and improved crystal structures of H. influenzae, E. coli and P. aeruginosa penicillin-binding protein 3 (PBP3) and N. gonorrhoeae PBP2: toward a better understanding of β-lactam target-mediated resistance. J Mol Biol 2019; 431: 3501–19. 10.1016/j.jmb.2019.07.010 PubMed DOI
Kaczmarek F, Gootz T, Dib-Hajj F et al. Genetic and molecular characterization of β-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 2004; 48: 1630–9. 10.1128/AAC.48.5.1630-1639.2004 PubMed DOI PMC
National Institute of Public Health . Respirační Patogeny. Haemophilus influenzae. 1996. https://apps.szu.cz/rp/
Aguirre-Quiñonero A, Pérez Del Molino IC, de la Fuente CG et al. Phenotypic detection of clinical isolates of Haemophilus influenzae with altered penicillin-binding protein 3. Eur J Clin Microbiol Infect Dis 2018; 37: 1475–80. 10.1007/s10096-018-3273-z PubMed DOI
Montgomery K, Raymundo L, Drew W. Chromogenic cephalosporin spot test to detect beta-lactamase in clinically significant bacteria. J Clin Microbiol 1979; 9: 205–7. 10.1128/jcm.9.2.205-207.1979 PubMed DOI PMC
Tristram S. A multiplex PCR for beta-lactamase genes of Haemophilus influenzae and description of a new blaTEM promoter variant. J Antimicrob Chemother 2006; 58: 183–5. 10.1093/jac/dkl150 PubMed DOI
PUBMLST . ftsI sequencing protocol v3. 2014. https://pubmlst.org/static/organisms/haemophilus-influenzae/ftsI_sequencing_protocol_v3_01-02-2014.pdf
Barry A, Packer R. Performance of Haemophilus test media prepared with 12 different lots of Mueller-Hinton agar from four manufacturers. J Clin Microbiol 1992; 30: 1145–7. 10.1128/jcm.30.5.1145-1147.1992 PubMed DOI PMC
CLSI . Development of in Vitro Susceptibility Testing Criteria and Quality Control Parameters—Third Edition: M23-A3. 2008.
McHugh ML. Interrater reliability: the kappa statistic. Biochem Med 2012; 22: 276–82. 10.11613/BM.2012.031 PubMed DOI PMC
Andrews J. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48: 5–16. 10.1093/jac/48.suppl_1.5 PubMed DOI
Qureshi M, Asad I, Chaudhary A et al. Beta-lactamase-negative ampicillin-resistant Haemophilus influenzae type b meningitis in partially immunized immunocompetent child: a case report. J Med Case Rep 2021; 15: 433. 10.1186/s13256-021-03041-8 PubMed DOI PMC
Jakubu V, Vrbova I, Bitar I et al. Evolution of mutations in the ftsI gene leading to amino acid substitutions in PBP3 in Haemophilus influenzae strains under the selective pressure of ampicillin and cefuroxime. Int J Med Microbiol 2024; 316: 151626. doi:10.1016/j.ijmm.2024.151626 PubMed DOI