SCIseg: Automatic Segmentation of T2-weighted Intramedullary Lesions in Spinal Cord Injury
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R03 HD094577
NICHD NIH HHS - United States
R01 NS128478
NINDS NIH HHS - United States
L30 NS108301
NINDS NIH HHS - United States
K23 NS104211
NINDS NIH HHS - United States
K01 HD106928
NICHD NIH HHS - United States
PubMed
38699309
PubMed Central
PMC11065035
DOI
10.1101/2024.01.03.24300794
PII: 2024.01.03.24300794
Knihovny.cz E-zdroje
- Klíčová slova
- Convolution Neural Networks (CNN), MR-Imaging, Segmentation, Spinal Cord, Supervised learning, Trauma,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
PURPOSE: To develop a deep learning tool for the automatic segmentation of T2-weighted intramedullary lesions in spinal cord injury (SCI). MATERIAL AND METHODS: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The data consisted of T2-weighted MRI acquired using different scanner manufacturers with heterogeneous image resolutions (isotropic/anisotropic), orientations (axial/sagittal), lesion etiologies (traumatic/ischemic/hemorrhagic) and lesions spread across the cervical, thoracic and lumbar spine. The segmentations from the proposed model were visually and quantitatively compared with other open-source baselines. Wilcoxon signed-rank test was used to compare quantitative MRI biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual lesion masks and those obtained automatically with SCIseg predictions. RESULTS: MRI data from 191 SCI patients (mean age, 48.1 years ± 17.9 [SD]; 142 males) were used for model training and evaluation. SCIseg achieved the best segmentation performance for both the cord and lesions. There was no statistically significant difference between lesion length and maximal axial damage ratio computed from manually annotated lesions and those obtained using SCIseg. CONCLUSION: Automatic segmentation of intramedullary lesions commonly seen in SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model segments lesions across different etiologies, scanner manufacturers, and heterogeneous image resolutions. SCIseg is open-source and accessible through the Spinal Cord Toolbox.
Centre de Recherche du CHU Sainte Justine Université de Montréal Montreal QC Canada
Department of Neurology Faculty of Medicine and Dentistry Palacký University Olomouc Olomouc Czechia
Functional Neuroimaging Unit CRIUGM Université de Montréal Montreal QC Canada
Mila Quebec AI Institute Montreal QC Canada
NeuroPoly Lab Institute of Biomedical Engineering Polytechnique Montreal Montreal QC Canada
Spinal Cord Injury Center Balgrist University Hospital University of Zürich Zürich Switzerland
Zobrazit více v PubMed
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018. doi: 10.1038/nrdp.2017.18. PubMed DOI
Freund P, Seif M, Weiskopf N, et al. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol. 2019;18(12):1123–1135. doi: 10.1016/S1474-4422(19)30138-3. PubMed DOI
David G, Mohammadi S, Martin AR, et al. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol. 2019;15(12):718–731. doi: 10.1038/s41582-019-0270-5. PubMed DOI
Scivoletto G, Torre M, Mammone A, et al. Acute Traumatic and Ischemic Spinal Cord Injuries Have a Comparable Course of Recovery. Neurorehabil Neural Repair. 2020;34(8):723–732. doi: 10.1177/1545968320939569. PubMed DOI
New PW, Cripps RA, Bonne Lee B. Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal Cord. 2014;52(2):97–109. doi: 10.1038/sc.2012.165. PubMed DOI
Iseli E, Cavigelli A, Dietz V, Curt A. Prognosis and recovery in ischaemic and traumatic spinal cord injury: clinical and electrophysiological evaluation. J Neurol Neurosurg Psychiatry. 1999;67(5):567–571. doi: 10.1136/jnnp.67.5.567. PubMed DOI PMC
Pfyffer D, Huber E, Sutter R, Curt A, Freund P. Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury. Neurology. 2019;93(16):e1550–e1560. doi: 10.1212/WNL.0000000000008318. PubMed DOI PMC
Miyanji F, Furlan JC, Aarabi B, Arnold PM, Fehlings MG. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome--prospective study with 100 consecutive patients. Radiology. Radiological Society of North America (RSNA); 2007;243(3):820–827. doi: 10.1148/radiol.2433060583. PubMed DOI
Dobran M, Aiudi D, Liverotti V, et al. Prognostic MRI parameters in acute traumatic cervical spinal cord injury. Eur Spine J. 2023;32(5):1584–1590. doi: 10.1007/s00586-023-07560-4. PubMed DOI
Huber E, Lachappelle P, Sutter R, Curt A, Freund P. Are midsagittal tissue bridges predictive of outcome after cervical spinal cord injury? Ann Neurol. 2017;81(5):740–748. doi: 10.1002/ana.24932. PubMed DOI
Smith AC, Albin SR, O’Dell DR, et al. Axial MRI biomarkers of spinal cord damage to predict future walking and motor function: a retrospective study. Spinal Cord. 2021;59(6):693–699. doi: 10.1038/s41393-020-00561-w. PubMed DOI PMC
Kurpad S, Martin AR, Tetreault LA, et al. Impact of Baseline Magnetic Resonance Imaging on Neurologic, Functional, and Safety Outcomes in Patients With Acute Traumatic Spinal Cord Injury. Global Spine Journal. SAGE Publications; 2017;7(3 Suppl):151S. doi: 10.1177/2192568217703666. PubMed DOI PMC
Martin AR, De Leener B, Cohen-Adad J, et al. A novel MRI biomarker of spinal cord white matter injury: T2*-weighted white matter to gray matter signal intensity ratio. AJNR Am J Neuroradiol. 2017;38(6):1266–1273. doi: 10.3174/ajnr.A5162. PubMed DOI PMC
Badhiwala JH, Ahuja CS, Akbar MA, et al. Degenerative cervical myelopathy - update and future directions. Nat Rev Neurol. 2020;16(2):108–124. doi: 10.1038/s41582-019-0303-0. PubMed DOI
De Leener B, Lévy S, Dupont SM, et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage. 2017;145(Pt A):24–43. doi: 10.1016/j.neuroimage.2016.10.009. PubMed DOI
Bischof A, Papinutto N, Keshavan A, et al. Spinal Cord Atrophy Predicts Progressive Disease in Relapsing Multiple Sclerosis. Ann Neurol. 2022;91(2):268–281. doi: 10.1002/ana.26281. PubMed DOI PMC
Smith AC, Weber KA 2nd, O’Dell DR, Parrish TB, Wasielewski M, Elliott JM. Lateral Corticospinal Tract Damage Correlates With Motor Output in Incomplete Spinal Cord Injury. Arch Phys Med Rehabil. 2018;99(4):660–666. doi: 10.1016/j.apmr.2017.10.002. PubMed DOI PMC
Mummaneni N, Burke JF, DiGiorgio AM, et al. Injury volume extracted from MRI predicts neurologic outcome in acute spinal cord injury: A prospective TRACK-SCI pilot study. J Clin Neurosci. J Clin Neurosci; 2020;82(Pt B):231–236. doi: 10.1016/J.JOCN.2020.11.003. PubMed DOI
Vallotton K, Huber E, Sutter R, Curt A, Hupp M, Freund P. Width and neurophysiologic properties of tissue bridges predict recovery after cervical injury. Neurology. 2019;92(24):e2793–e2802. doi: 10.1212/WNL.0000000000007642. PubMed DOI PMC
Pfyffer D, Vallotton K, Curt A, Freund P. Predictive Value of Midsagittal Tissue Bridges on Functional Recovery After Spinal Cord Injury. Neurorehabil Neural Repair. 2021;35(1):33–43. doi: 10.1177/1545968320971787. PubMed DOI PMC
Khan O, Badhiwala JH, Wilson JRF, Jiang F, Martin AR, Fehlings MG. Predictive Modeling of Outcomes After Traumatic and Nontraumatic Spinal Cord Injury Using Machine Learning: Review of Current Progress and Future Directions. Neurospine. 2019;16(4):678–685. doi: 10.14245/ns.1938390.195. PubMed DOI PMC
Dietz N, Vaitheesh Jaganathan, Alkin V, Mettille J, Boakye M, Drazin D. Machine learning in clinical diagnosis, prognostication, and management of acute traumatic spinal cord injury (SCI): A systematic review. J Clin Orthop Trauma. 2022;35:102046. doi: 10.1016/j.jcot.2022.102046. PubMed DOI PMC
Asgari Taghanaki S, Abhishek K, Cohen JP, Cohen-Adad J, Hamarneh G. Deep semantic segmentation of natural and medical images: a review. Artificial Intelligence Review. 2021;54(1):137–178. doi: 10.1007/s10462-020-09854-1. DOI
McCoy DB, Dupont SM, Gros C, et al. Convolutional Neural Network-Based Automated Segmentation of the Spinal Cord and Contusion Injury: Deep Learning Biomarker Correlates of Motor Impairment in Acute Spinal Cord Injury. AJNR Am J Neuroradiol. 2019;40(4):737–744. doi: 10.3174/ajnr.A6020. PubMed DOI PMC
Rupp R, Biering-Sørensen F, Burns SP, et al. International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019. Top Spinal Cord Inj Rehabil. 2021;27(2):1–22. doi: 10.46292/sci2702-1. PubMed DOI PMC
Smith AC, O’Dell DR, Thornton WA, et al. Spinal Cord Tissue Bridges Validation Study: Predictive Relationships With Sensory Scores Following Cervical Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2022;28(2):111–115. doi: 10.46292/sci21-00018. PubMed DOI PMC
Cohen-Adad J, El Mendili MM, Lehéricy S, et al. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage. Elsevier Inc.; 2011;55(3):1024–1033. doi: 10.1016/j.neuroimage.2010.11.089. PubMed DOI
Gorgolewski KJ, Auer T, Calhoun VD, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data. Dordrecht: Springer Netherlands; 2016;3(1):160044. doi: 10.1038/sdata.2016.44. PubMed DOI PMC
Gros C, De Leener B, Badji A, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage. 2019;184:901–915. doi: 10.1016/j.neuroimage.2018.09.081. PubMed DOI PMC
Bédard S, Enamundram NK, Tsagkas C, et al. Towards contrast-agnostic soft segmentation of the spinal cord. arXiv [eess.IV]. 2023. http://arxiv.org/abs/2310.15402. PubMed
Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–211. doi: 10.1038/s41592-020-01008-z. PubMed DOI
Budd S, Robinson EC, Kainz B. A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med Image Anal. 2021;71:102062. doi: 10.1016/j.media.2021.102062. PubMed DOI
De Leener B, Kadoury S, Cohen-Adad J. Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage. 2014; doi: 10.1016/j.neuroimage.2014.04.051. PubMed DOI
Commowick O, Istace A, Kain M, et al. Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure. Sci Rep. 2018;8(1):13650. doi: 10.1038/s41598-018-31911-7. PubMed DOI PMC
Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. Nature Publishing Group; 2020;17(3):261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC
Blanc C, Shahrampour S, Mohamed FB, de Leener B. Combining PropSeg and a convolutional neural network for automatic spinal cord segmentation in pediatric populations and patients with spinal cord injury. Int J Imaging Syst Technol. John Wiley & Sons, Ltd; 2023;n/a(n/a). doi: 10.1002/ima.22859. DOI
Smith AC, Weber KA, Parrish TB, et al. Ambulatory function in motor incomplete spinal cord injury: a magnetic resonance imaging study of spinal cord edema and lower extremity muscle morphometry. Spinal Cord. 2017;55(7):672–678. doi: 10.1038/sc.2017.18. PubMed DOI PMC
Cummins DP, Connor JR, Heller KA, et al. Establishing the inter-rater reliability of spinal cord damage manual measurement using magnetic resonance imaging. Spinal Cord Ser Cases. 2019;5:20. doi: 10.1038/s41394-019-0164-1. PubMed DOI PMC
Nouri A, Martin AR, Kato S, Reihani-Kermani H, Riehm LE, Fehlings MG. The Relationship between MRI Signal Intensity Changes, Clinical Presentation, and Surgical Outcome in Degenerative Cervical Myelopathy. Spine . 2017;42(24):1851–1858. doi: 10.1097/BRS.0000000000002234. PubMed DOI
Martin AR, Tadokoro N, Tetreault L, et al. Imaging Evaluation of Degenerative Cervical Myelopathy: Current State of the Art and Future Directions. Neurosurgery Clinics of North America. Neurosurg Clin N Am; 2018. p. 33–45. doi: 10.1016/j.nec.2017.09.003. PubMed DOI
Scheuren PS, David G, Kipling Kramer JL, et al. Combined Neurophysiologic and Neuroimaging Approach to Reveal the Structure-Function Paradox in Cervical Myelopathy. Neurology. 2021; doi: 10.1212/WNL.0000000000012643 PubMed DOI