Hospital Wastewater-Source of Specific Micropollutants, Antibiotic-Resistant Microorganisms, Viruses, and Their Elimination

. 2021 Sep 04 ; 10 (9) : . [epub] 20210904

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572652

Grantová podpora
APVV-19-0250, APVV - 17-0183, PP-COVID-20-0019 Agentúra na Podporu Výskumu a Vývoja
1/0343/19, 1/0464/21 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
ITMS 26240220084 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
313011ASS8 European Regional Development Fund

Odkazy

PubMed 34572652
PubMed Central PMC8471966
DOI 10.3390/antibiotics10091070
PII: antibiotics10091070
Knihovny.cz E-zdroje

Municipal wastewaters can generally provide real-time information on drug consumption, the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle consequences. From this point of view, wastewater-based epidemiology represents a modern diagnostic tool for describing the health status of a certain part of the population in a specific region. Hospital wastewater is a complex mixture of pharmaceuticals, illegal drugs, and their metabolites as well as different susceptible and antibiotic-resistant microorganisms, including viruses. Many studies pointed out that wastewater from healthcare facilities (including hospital wastewater), significantly contributes to higher loads of micropollutants, including bacteria and viruses, in municipal wastewater. In addition, such a mixture can increase the selective pressure on bacteria, thus contributing to the development and dissemination of antimicrobial resistance. Because many pharmaceuticals, drugs, and microorganisms can pass through wastewater treatment plants without any significant change in their structure and toxicity and enter surface waters, treatment technologies need to be improved. This short review summarizes the recent knowledge from studies on micropollutants, pathogens, antibiotic-resistant bacteria, and viruses (including SARS-CoV-2) in wastewater from healthcare facilities. It also proposes several possibilities for improving the wastewater treatment process in terms of efficiency as well as economy.

Zobrazit více v PubMed

Yilmaz G., Kaya Y., Vergili I., Beril Gönder Z., Özhan G., Ozbek Celik B., Altinkum S.M., Bagdatli Y., Boergers A., Tuerk J. Characterization and toxicity of hospital wastewaters in Turkey. Environ. Monit. Assess. 2017;189:55:1–55:19. doi: 10.1007/s10661-016-5732-2. PubMed DOI

Castillo Meza L., Piotrowski P., Farnan J., Tasker T.L., Xiong B., Weggler B., Murrell K., Dorman F.L., Vanden Heuvel J.P., Burgos W.D. Detection and removal of biologically active organic micropollutants from hospital wastewater. Sci. Total Environ. 2020;700:134469:1–134469:8. doi: 10.1016/j.scitotenv.2019.134469. PubMed DOI

van Buul L.W., van der Steen J.T., Doncker S.M.M.M., Achterberg W.P., Schellevis F.G., Veenhuizen R.B., Hertogh C.M.P.M. Factors influencing antibiotic prescribing in long-term care facilities: A qualitative in-depth study. BMC Geriatr. 2014;14:136:1–136:11. doi: 10.1186/1471-2318-14-136. PubMed DOI PMC

Klein E.Y., Milkowska-Shibata M., Tseng K.K., Sharland M., Gandra S., Pulcini C., Laxminarayan R. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–2015: An analysis of pharmaceutical sales data. Lancet Infect. Dis. 2021;21:107–115. doi: 10.1016/S1473-3099(20)30332-7. PubMed DOI

Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., et al. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials. 2020;10:292. doi: 10.3390/nano10020292. PubMed DOI PMC

Palza H., Nuñez M., Bastías R., Delgado K. In situ antimicrobial behavior of materials with copper-based additives in a hospital environment. Int. J. Antimicrob. Agents. 2018;51:912–917. doi: 10.1016/j.ijantimicag.2018.02.007. PubMed DOI

Sengar A., Vijayanandan A. Comprehensive review on iodinated X-ray contrast media: Complete fate, occurrence, and formation of disinfection byproducts. Sci. Total Environ. 2021;769:144846:1–144846:23. doi: 10.1016/j.scitotenv.2020.144846. PubMed DOI

Khan M.T., Shah I.A., Ihsanullah I., Naushad M., Ali S., Shah S.H.A., Mohammad A.W. Hospital wastewater as a source of environmental contamination: An overview of management practices, environmental risks, and treatment processes. J. Water Process Eng. 2021;41:101990:1–101990:17. doi: 10.1016/j.jwpe.2021.101990. DOI

Mackuľak T., Bodík I., Bírošová L. Drogy a liečivá ako mikropolutanty. 1st ed. FCHPT STU v Bratislave; Bratislava, Slovakia: 2016.

Aydin S., Aydin M.E., Ulvi A., Kilic H. Antibiotics in hospital effluents: Occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environ. Sci. Pollut. Res. 2019;26:544–558. doi: 10.1007/s11356-018-3563-0. PubMed DOI

Ngigi A.N., Magu M.M., Muendo B.M. Occurrence of antibiotics residues in hospital wastewater, wastewater treatment plant, and in surface water in Nairobi County, Kenya. Environ. Monit. Assess. 2019;192:18:1–18:16. doi: 10.1007/s10661-019-7952-8. PubMed DOI

Heberer T., Feldmann D. Contribution of effluents from hospitals and private households to the total loads of diclofenac and carbamazepine in municipal sewage effluents—Modeling versus measurements. J. Hazard. Mater. 2005;122:211–218. doi: 10.1016/j.jhazmat.2005.03.007. PubMed DOI

Saussereau E., Lacroix C., Guerbet M., Cellier D., Spiroux J., Goullé J.P. Determination of levels of current drugs in hospital and urban wastewater. Bull. Environ. Contam. Toxicol. 2013;91:171–176. doi: 10.1007/s00128-013-1030-7. PubMed DOI

Yuan S., Jiang X., Xia X., Zhang H., Zheng S. Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China. Chemosphere. 2013;90:2520–2525. doi: 10.1016/j.chemosphere.2012.10.089. PubMed DOI

ECDC Antimicrobial Resistance and Consumption Remains High in the EU/EEA and the UK, according to New ECDC Data. [(accessed on 13 July 2021)]. Available online: https://www.ecdc.europa.eu/en/news-events/antimicrobial-resistance-and-consumption-remains-high-press-release.

Zhou C., Wu J., Dong L., Liu B., Xing D., Yang S., Wu X., Wang Q., Fan J., Feng L., et al. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. J. Hazard. Mater. 2020;388:122070:1–122070:8. doi: 10.1016/j.jhazmat.2020.122070. PubMed DOI

Pärnänen K.M.M., Narciso-da-Rocha C., Kneis D., Berendonk T.U., Cacace D., Do T.T., Elpers C., Fatta-Kassinos D., Henriques I., Jaeger T., et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019;5:eaau9124:1–eaau9124:10. doi: 10.1126/sciadv.aau9124. PubMed DOI PMC

Jiao Y.-N., Chen H., Gao R.-X., Zhu Y.-G., Rensing C. Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems. Chemosphere. 2017;184:53–61. doi: 10.1016/j.chemosphere.2017.05.149. PubMed DOI

Liu Y., Tong Z., Shi J., Jia Y., Yang K., Wang Z. Correlation between Exogenous Compounds and the Horizontal Transfer of Plasmid-Borne Antibiotic Resistance Genes. Microorganisms. 2020;8:1211. doi: 10.3390/microorganisms8081211. PubMed DOI PMC

Mir-Tutusaus J.A., Parladé E., Villagrasa M., Barceló D., Rodríguez-Mozaz S., Martínez-Alonso M., Gaju N., Sarrà M., Caminal G. Long-term continuous treatment of non-sterile real hospital wastewater by Trametes versicolor. J. Biol. Eng. 2019;13:47:1–47:13. doi: 10.1186/s13036-019-0179-y. PubMed DOI PMC

Wang Q., Wang P., Yang Q. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Sci. Total Environ. 2018;621:990–999. doi: 10.1016/j.scitotenv.2017.10.128. PubMed DOI

Vandael E., Latour K., Goossens H., Magerman K., Drapier N., Catry B., Versporten A., Andre M., Aouachria S., Aoun M., et al. Point prevalence survey of antimicrobial use and healthcare-associated infections in Belgian acute care hospitals: Results of the Global-PPS and ECDC-PPS 2017. Antimicrob. Resist. Infect. Control. 2020;9:13:1–13:13. doi: 10.1186/s13756-019-0663-7. PubMed DOI PMC

David S., Reuter S., Harris S.R., Glasner C., Feltwell T., Argimon S., Abudahab K., Goater R., Giani T., Errico G., et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019;4:1919–1929. doi: 10.1038/s41564-019-0492-8. PubMed DOI PMC

Bírošová L., Kislíková K., Lépesová K. Antibiotic resistant coliforms: From human gut to wastewater. In: Amimul A., editor. Nutrients, Wastewater and Leachate: Testing, Risks and Hazards. Nova Publishers; New York, NY, USA: 2018.

Lépesová K., Olejníková P., Mackuľak T., Cverenkárová K., Krahulcová M., Bírošová L. Hospital Wastewater—Important Source of Multidrug Resistant Coliform Bacteria with ESBL-Production. Int. J. Environ. Res. Public Health. 2020;17:7827. doi: 10.3390/ijerph17217827. PubMed DOI PMC

Bírošová L., Lépesová K., Grabic R., Mackuľak T. Non-antimicrobial pharmaceuticals can affect the development of antibiotic resistance in hospital wastewater. Environ. Sci. Pollut. Res. 2020;27:13501–13511. doi: 10.1007/s11356-020-07950-x. PubMed DOI

Thai-Hoang L., Charmaine N., Hongjie C., Zhu Y.X., Hsien K.T., Sebastian B.T.M., Zhi Z., Yew-Hoong G.K. Occurrences and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country. Antimicrob. Agents Chemother. 2021;60:7449–7456. doi: 10.1128/AAC.01556-16. PubMed DOI PMC

Lépesová K. Ph.D. Thesis. Slovak University of Technology; Bratislava, Slovakia: 2018. Výskyt, Štúdium a Možnosti Redukcie Vybraných Baktérií Rezistentných Voči Antibiotikám v Kaloch a Vodách z Čistiarní Odpadových Vôd.

Domínguez J.R., González T., Palo P., Cuerda-Correa E.M. Fenton + Fenton-like Integrated Process for Carbamazepine Degradation: Optimizing the System. Ind. Eng. Chem. Res. 2012;51:2531–2538. doi: 10.1021/ie201980p. DOI

Katouli M., Thompson J.M., Gündoğdu A., Stratton H.M. Antibiotic Resistant Bacteria in Hospital Wastewaters and Sewage Treatment Plants. In: Begbie D.K., Kenway S.J., Biermann S.M., Wakem S.L., editors. Proceedings of the Science Forum and Stakeholder Engagement: Building Linkages, Collaboration and Science Quality; Brisbane, Australia. 19–20 June 2012; Brisbane, Australia: Urban Water Security Research Alliance; 2012. 225p

Lépesová K., Olejníková P., Mackuľak T., Tichý J., Birošová L. Annual changes in the occurrence of antibiotic-resistant coliform bacteria and enterococci in municipal wastewater. Environ. Sci. Pollut. Res. 2019;26:18470–18483. doi: 10.1007/s11356-019-05240-9. PubMed DOI

Maheshwari M., Yaser N.H., Naz S., Fatima M., Ahmad I. Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources. J. Glob. Antimicrob. Resist. 2016;5:22–25. doi: 10.1016/j.jgar.2016.01.008. PubMed DOI

Lépesová K., Mackuľak T., Birošová L. Vplyv odpadovej vody na vznik a šírenie bakteriálnej rezistencie voči antibiotikám. Chem. List. 2017;111:374–380.

Prado T., Silva D.M., Guilayn W.C., Rose T.L., Gaspar A.M.C., Miagostovich M.P. Quantification and molecular characterization of enteric viruses detected in effluents from two hospital wastewater treatment plants. Water Res. 2011;45:1287–1297. doi: 10.1016/j.watres.2010.10.012. PubMed DOI

Chahal C., van den Akker B., Young F., Franco C., Blackbeard J., Monis P. Pathogen and Particle Associations in Wastewater. In: Sariaslani S., Geoffrey M.G., editors. Advances in Applied Microbiology. Volume 97. Academic Press; Cambridge, MA, USA: 2016. pp. 63–119. PubMed PMC

Mandal P., Gupta A.K., Dubey B.K. A review on presence, survival, disinfection/removal methods of coronavirus in wastewater and progress of wastewater-based epidemiology. J. Environ. Chem. Eng. 2020;8:104317:1–104317:10. doi: 10.1016/j.jece.2020.104317. PubMed DOI PMC

Gonçalves J., Koritnik T., Mioč V., Trkov M., Bolješič M., Berginc N., Prosenc K., Kotar T., Paragi M. Detection of SARS-CoV-2 RNA in hospital wastewater from a low COVID-19 disease prevalence area. Sci. Total Environ. 2021;755:143226:1–143226:7. doi: 10.1016/j.scitotenv.2020.143226. PubMed DOI PMC

Medema G., Heijnen L., Elsinga G., Italiaander R., Brouwer A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020;7:511–516. doi: 10.1021/acs.estlett.0c00357. PubMed DOI

Wang X.-W., Li J.-S., Guo T.-K., Zhen B., Kong Q.-X., Yi B., Li Z., Song N., Jin M., Xiao W.-J., et al. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th Hospital. J. Virol. Methods. 2005;128:156–161. doi: 10.1016/j.jviromet.2005.03.022. PubMed DOI PMC

Corpuz M.V.A., Buonerba A., Vigliotta G., Zarra T., Ballesteros F.J., Campiglia P., Belgiorno V., Korshin G., Naddeo V. Viruses in wastewater: Occurrence, abundance and detection methods. Sci. Total Environ. 2020;745:140910. doi: 10.1016/j.scitotenv.2020.140910. PubMed DOI PMC

Rimoldi S.G., Stefani F., Gigantiello A., Polesello S., Comandatore F., Mileto D., Maresca M., Longobardi C., Mancon A., Romeri F., et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020;744:140911. doi: 10.1016/j.scitotenv.2020.140911. PubMed DOI PMC

Carraturo F., Del Giudice C., Morelli M., Cerullo V., Libralato G., Galdiero E., Guida M. Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces. Environ. Pollut. 2020;265:115010:1–115010:6. doi: 10.1016/j.envpol.2020.115010. PubMed DOI PMC

Kemp S.A., Collier D.A., Datir R.P., Ferreira I.A.T.M., Gayed S., Jahun A., Hosmillo M., Rees-Spear C., Mlcochova P., Lumb I.U., et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature. 2021;592:277–282. doi: 10.1038/s41586-021-03291-y. PubMed DOI PMC

Ong S.W.X., Chiew C.J., Ang L.W., Mak T.-M., Cui L., Toh M.P.H., Lim Y.D., Lee P.H., Lee T.H., Chia P.Y., et al. Clinical and Virological Features of SARS-CoV-2 Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.315 (Beta), and B.1.617.2 (Delta) SSRN Electron. J. 2021 doi: 10.2139/ssrn.3861566. PubMed DOI PMC

Wang J., Shen J., Ye D., Yan X., Zhang Y., Yang W., Li X., Wang J., Zhang L., Pan L. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ. Pollut. 2020;262:114665:1–114665:10. doi: 10.1016/j.envpol.2020.114665. PubMed DOI PMC

Zhang D., Ling H., Huang X., Li J., Li W., Yi C., Zhang T., Jiang Y., He Y., Deng S., et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci. Total Environ. 2020;741:140445:1–140445:5. doi: 10.1016/j.scitotenv.2020.140445. PubMed DOI PMC

Achak M., Alaoui Bakri S., Chhiti Y., M’hamdi Alaoui F.E., Barka N., Boumya W. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Sci. Total Environ. 2021;761:143192:1–143192:15. doi: 10.1016/j.scitotenv.2020.143192. PubMed DOI PMC

Stavbar S., Hrnčič M.K., Premzl K., Kolar M., Turk S.Š. Sub- and super-critical water oxidation of wastewater containing amoxicillin and ciprofloxacin. J. Supercrit. Fluids. 2017;128:73–78. doi: 10.1016/j.supflu.2017.05.013. DOI

Lado Ribeiro A.R., Moreira N.F.F., Li Puma G., Silva A.M.T. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem. Eng. J. 2019;363:155–173. doi: 10.1016/j.cej.2019.01.080. DOI

Jaén-Gil A., Castellet-Rovira F., Llorca M., Villagrasa M., Sarrà M., Rodríguez-Mozaz S., Barceló D. Fungal treatment of metoprolol and its recalcitrant metabolite metoprolol acid in hospital wastewater: Biotransformation, sorption and ecotoxicological impact. Water Res. 2019;152:171–180. doi: 10.1016/j.watres.2018.12.054. PubMed DOI

Czölderová M., Behúl M., Filip J., Zajíček P., Grabic R., Vojs-Staňová A., Gál M., Kerekeš K., Híveš J., Ryba J., et al. 3D printed polyvinyl alcohol ferrate(VI) capsules: Effective means for the removal of pharmaceuticals and illicit drugs from wastewater. Chem. Eng. J. 2018;349:269–275. doi: 10.1016/j.cej.2018.05.089. DOI

Verlicchi P., Al Aukidy M., Zambello E. What have we learned from worldwide experiences on the management and treatment of hospital effluent?–An overview and a discussion on perspectives. Sci. Total Environ. 2015;514:467–491. doi: 10.1016/j.scitotenv.2015.02.020. PubMed DOI PMC

Mackuľak T., Grabic R., Špalková V., Belišová N., Škulcová A., Slavík O., Horký P., Gál M., Filip J., Híveš J., et al. Hospital wastewaters treatment: Fenton reaction vs. BDDE vs. ferrate(VI) Environ. Sci. Pollut. Res. 2019;26:31812–31821. doi: 10.1007/s11356-019-06290-9. PubMed DOI

Bimová P., Roupcová P., Klouda K., Matějová L., Staňová A.V., Grabicová K., Grabic R., Majová V., Híveš J., Špalková V., et al. Biochar–An efficient sorption material for the removal of pharmaceutically active compounds, DNA and RNA fragments from wastewater. J. Environ. Chem. Eng. 2021;9:105746:1–105746:9. doi: 10.1016/j.jece.2021.105746. DOI

Tasca A.L., Clematis D., Stefanelli E., Panizza M., Puccini M. Ciprofloxacin removal: BDD anode coupled with solid polymer electrolyte and ultrasound irradiation. J. Water Process Eng. 2020;33:101074. doi: 10.1016/j.jwpe.2019.101074. PubMed DOI

Tasca A.L., Clematis D., Panizza M., Vitolo S., Puccini M. Chlorpyrifos removal: Nb/boron-doped diamond anode coupled with solid polymer electrolyte and ultrasound irradiation. J. Environ. Heal. Sci. Eng. 2020;18:1391–1399. doi: 10.1007/s40201-020-00555-z. PubMed DOI PMC

Butor Škulcová A., Tamášová K., Vojs Staňová A., Bírošová L., Krahulcová M., Gál M., Konečná B., Janíková M., Celec P., Grabicová K., et al. Effervescent ferrate(VI)-based tablets as an effective means for removal SARS-CoV-2 RNA, pharmaceuticals and resistant bacteria from wastewater. J. Water Process Eng. 2021;43:102223. doi: 10.1016/j.jwpe.2021.102223. PubMed DOI PMC

Kajitvichyanukul P., Suntronvipart N. Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method. J. Hazard. Mater. 2006;138:384–391. doi: 10.1016/j.jhazmat.2006.05.064. PubMed DOI

Nielsen U., Hastrup C., Klausen M.M., Pedersen B.M., Kristensen G.H., Jansen J.L.C., Bak S.N., Tuerk J. Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2. Water Sci. Technol. 2013;67:854–862. doi: 10.2166/wst.2012.645. PubMed DOI

Paulus G.K., Hornstra L.M., Alygizakis N., Slobodnik J., Thomaidis N., Medema G. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int. J. Hyg. Environ. Health. 2019;222:635–644. doi: 10.1016/j.ijheh.2019.01.004. PubMed DOI

Bagheri H., Afkhami A., Noroozi A. Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: A review. Anal. Bioanal. Chem. Res. 2016;3:1–18. doi: 10.22036/abcr.2016.12655. DOI

Luo Y., Feng L., Liu Y., Zhang L. Disinfection by-products formation and acute toxicity variation of hospital wastewater under different disinfection processes. Sep. Purif. Technol. 2020;238:116405:1–116405:10. doi: 10.1016/j.seppur.2019.116405. DOI

Vo H.N.P., Koottatep T., Chapagain S.K., Panuvatvanich A., Polprasert C., Nguyen T.M.H., Chaiwong C., Nguyen N.L. Removal and monitoring acetaminophen-contaminated hospital wastewater by vertical flow constructed wetland and peroxidase enzymes. J. Environ. Manag. 2019;250:109526:1–109526:9. doi: 10.1016/j.jenvman.2019.109526. PubMed DOI

Vo T.-K.-Q., Bui X.-T., Chen S.-S., Nguyen P.-D., Cao N.-D.-T., Vo T.-D.-H., Nguyen T.-T., Nguyen T.-B. Hospital wastewater treatment by sponge membrane bioreactor coupled with ozonation process. Chemosphere. 2019;230:377–383. doi: 10.1016/j.chemosphere.2019.05.009. PubMed DOI

Shokoohi R., Ghobadi N., Godini K., Hadi M., Atashzaban Z. Antibiotic detection in a hospital wastewater and comparison of their removal rate by activated sludge and earthworm-based vermifilteration: Environmental risk assessment. Process Saf. Environ. Prot. 2020;134:169–177. doi: 10.1016/j.psep.2019.10.020. DOI

Tang K., Spiliotopoulou A., Chhetri R.K., Ooi G.T.H., Kaarsholm K.M.S., Sundmark K., Florian B., Kragelund C., Bester K., Andersen H.R. Removal of pharmaceuticals, toxicity and natural fluorescence through the ozonation of biologically-treated hospital wastewater, with further polishing via a suspended biofilm. Chem. Eng. J. 2019;359:321–330. doi: 10.1016/j.cej.2018.11.112. DOI

Kovalova L., Siegrist H., von Gunten U., Eugster J., Hagenbuch M., Wittmer A., Moser R., McArdell C.S. Elimination of Micropollutants during Post-Treatment of Hospital Wastewater with Powdered Activated Carbon, Ozone, and UV. Environ. Sci. Technol. 2013;47:7899–7908. doi: 10.1021/es400708w. PubMed DOI

Echevarría C., Valderrama C., Cortina J.L., Martín I., Arnaldos M., Bernat X., De la Cal A., Boleda M.R., Vega A., Teuler A., et al. Techno-economic evaluation and comparison of PAC-MBR and ozonation-UV revamping for organic micro-pollutants removal from urban reclaimed wastewater. Sci. Total Environ. 2019;671:288–298. doi: 10.1016/j.scitotenv.2019.03.365. PubMed DOI

Moussavi G., Fathi E., Moradi M. Advanced disinfecting and post-treating the biologically treated hospital wastewater in the UVC/H2O2 and VUV/H2O2 processes: Performance comparison and detoxification efficiency. Process Saf. Environ. Prot. 2019;126:259–268. doi: 10.1016/j.psep.2019.04.016. DOI

Nardi G., Feretti D., Bracchi U., Tanzi M.L., Dore F., Francesconi A., Grottolo M., Bragonzi G., Perna M.C., Monarca S. Acque reflue ospedaliere. Valutazione di un trattamento di disinfezione con biossido di cloro. Inquinamento. 1995;7:77–83.

Suarez S., Lema J., Omil F. Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresour. Technol. 2009;100:2138–2146. doi: 10.1016/j.biortech.2008.11.015. PubMed DOI

Pereira C.S., Kelbert M., Daronch N.A., Michels C., de Oliveira D., Soares H.M. Potential of enzymatic process as an innovative technology to remove anticancer drugs in wastewater. Appl. Microbiol. Biotechnol. 2020;104:23–31. doi: 10.1007/s00253-019-10229-y. PubMed DOI

Le Minh Tri N., Kim J., Giang B.L., Al Tahtamouni T.M., Huong P.T., Lee C., Viet N.M., Quang Trung D. Ag-doped graphitic carbon nitride photocatalyst with remarkably enhanced photocatalytic activity towards antibiotic in hospital wastewater under solar light. J. Ind. Eng. Chem. 2019;80:597–605. doi: 10.1016/j.jiec.2019.08.037. DOI

Serna-Galvis E.A., Silva-Agredo J., Botero-Coy A.M., Moncayo-Lasso A., Hernández F., Torres-Palma R.A. Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Sci. Total Environ. 2019;670:623–632. doi: 10.1016/j.scitotenv.2019.03.153. PubMed DOI

Ahmadzadeh S., Dolatabadi M. Removal of acetaminophen from hospital wastewater using electro-Fenton process. Environ. Earth Sci. 2018;77:53:1–53:11. doi: 10.1007/s12665-017-7203-7. DOI

Arslan A., Veli S., Bingöl D. Use of response surface methodology for pretreatment of hospital wastewater by O3/UV and O3/UV/H2O2 processes. Sep. Purif. Technol. 2014;132:561–567. doi: 10.1016/j.seppur.2014.05.036. DOI

Karaolia P., Michael I., García-Fernández I., Agüera A., Malato S., Fernández-Ibáñez P., Fatta-Kassinos D. Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation. Sci. Total Environ. 2014;468–469:19–27. doi: 10.1016/j.scitotenv.2013.08.027. PubMed DOI

Mackuľak T., Vojs M., Grabic R., Golovko O., Staňová A.V., Birošová L., Medveďová A., Híveš J., Gál M., Kromka A., et al. Occurrence of pharmaceuticals, illicit drugs, and resistant types of bacteria in hospital effluent and their effective degradation by boron-doped diamond electrodes. Mon. Chem. 2016;147:97–103. doi: 10.1007/s00706-015-1582-9. DOI

Ouarda Y., Tiwari B., Azaïs A., Vaudreuil M.-A., Ndiaye S.D., Drogui P., Tyagi R.D., Sauvé S., Desrosiers M., Buelna G., et al. Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process: Kinetic study and toxicity assessment. Chemosphere. 2018;193:160–169. doi: 10.1016/j.chemosphere.2017.11.010. PubMed DOI

Rajab M., Heim C., Letzel T., Drewes J.E., Helmreich B. Electrochemical disinfection using boron-doped diamond electrode–The synergetic effects of in situ ozone and free chlorine generation. Chemosphere. 2015;121:47–53. doi: 10.1016/j.chemosphere.2014.10.075. PubMed DOI

Vasconcelos T.G., Kümmerer K., Henriques D.M., Martins A.F. Ciprofloxacin in hospital effluent: Degradation by ozone and photoprocesses. J. Hazard. Mater. 2009;169:1154–1158. doi: 10.1016/j.jhazmat.2009.03.143. PubMed DOI

Munoz M., Garcia-Muñoz P., Pliego G., Pedro Z.M.D., Zazo J.A., Casas J.A., Rodriguez J.J. Application of intensified Fenton oxidation to the treatment of hospital wastewater: Kinetics, ecotoxicity and disinfection. J. Environ. Chem. Eng. 2016;4:4107–4112. doi: 10.1016/j.jece.2016.09.019. DOI

Miralles-Cuevas S., Oller I., Pérez J.A.S., Malato S. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Res. 2014;64:23–31. doi: 10.1016/j.watres.2014.06.032. PubMed DOI

Lee Y., von Gunten U. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical) Water Res. 2010;44:555–566. doi: 10.1016/j.watres.2009.11.045. PubMed DOI

Zhou Z., Jiang J.-Q. Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI) Chemosphere. 2015;119:95–100. doi: 10.1016/j.chemosphere.2014.04.006. PubMed DOI

Mackuľak T., Birošová L., Bodík I., Grabic R., Takáčová A., Smolinská M., Hanusová A., Híveš J., Gál M. Zerovalent iron and iron(VI): Effective means for the removal of psychoactive pharmaceuticals and illicit drugs from wastewaters. Sci. Total Environ. 2016;539:420–426. doi: 10.1016/j.scitotenv.2015.08.138. PubMed DOI

Kosma C.I., Lambropoulou D.A., Albanis T.A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J. Hazard. Mater. 2010;179:804–817. doi: 10.1016/j.jhazmat.2010.03.075. PubMed DOI

Lin A.Y.-C., Yu T.-H., Lin C.-F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere. 2008;74:131–141. doi: 10.1016/j.chemosphere.2008.08.027. PubMed DOI

Sim W.-J., Lee J.-W., Lee E.-S., Shin S.-K., Hwang S.-R., Oh J.-E. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere. 2011;82:179–186. doi: 10.1016/j.chemosphere.2010.10.026. PubMed DOI

Gómez M.J., Petrović M., Fernández-Alba A.R., Barceló D. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography–tandem mass spectrometry analysis in hospital effluent wastewaters. J. Chromatogr. A. 2006;1114:224–233. doi: 10.1016/j.chroma.2006.02.038. PubMed DOI

Langford K.H., Thomas K.V. Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environ. Int. 2009;35:766–770. doi: 10.1016/j.envint.2009.02.007. PubMed DOI

Verlicchi P., Al Aukidy M., Galletti A., Petrovic M., Barceló D. Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci. Total Environ. 2012;430:109–118. doi: 10.1016/j.scitotenv.2012.04.055. PubMed DOI

Kovalova L., Siegrist H., Singer H., Wittmer A., McArdell C.S. Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination. Environ. Sci. Technol. 2012;46:1536–1545. doi: 10.1021/es203495d. PubMed DOI

Perrodin Y., Christine B., Sylvie B., Alain D., Jean-Luc B.-K., Cécile C.-O., Audrey R., Elodie B. A priori assessment of ecotoxicological risks linked to building a hospital. Chemosphere. 2013;90:1037–1046. doi: 10.1016/j.chemosphere.2012.08.049. PubMed DOI

Lin A.Y.-C., Wang X.-H., Lin C.-F. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters. Chemosphere. 2010;81:562–570. doi: 10.1016/j.chemosphere.2010.08.051. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...