Effervescent ferrate(VI)-based tablets as an effective means for removal SARS-CoV-2 RNA, pharmaceuticals and resistant bacteria from wastewater

. 2021 Oct ; 43 () : 102223. [epub] 20210720

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35592837
Odkazy

PubMed 35592837
PubMed Central PMC8290487
DOI 10.1016/j.jwpe.2021.102223
PII: S2214-7144(21)00310-X
Knihovny.cz E-zdroje

Waterborne pathogens including viruses, bacteria and micropollutants secreted from population can spread through the sewerage system. In this study, the efficiency of unique effervescent ferrate-based tablets was evaluated for total RNA and DNA removal, disinfection and degradation of micropollutants in hospital wastewater. For the purpose of testing, proposed tablets (based on citric acid or sodium dihydrogen phosphate) were used for various types of hospital wastewater with specific biological and chemical contamination. Total RNA destruction efficiency using tablets was 70-100% depending on the type of acidic component. DNA destruction efficiency was lower on the level 51-94% depending on the type of acidic component. In addition, our study confirms that effervescent ferrate-based tablets are able to efficiently remove of SARS-CoV-2 RNA from wastewater. Degradation of often detected micropollutants (antiepileptic, antidepressant, antihistamine, hypertensive and their metabolites) was dependent on the type of detected pharmaceuticals and on the acidic component used. Sodium dihydrogen phosphate based tablet appeared to be more effective than citric acid based tablet and removed some pharmaceuticals with efficiency higher than 97%. Last but not least, the disinfection ability was also verified. Tableted ferrates were confirmed to be an effective disinfectant and no resistant microorganisms were observed after treatment. Total and antibiotic resistant bacteria (coliforms and enterococci) were determined by cultivation on diagnostic selective agar growth media.

Department Nutrition and Food Quality Assessment Faculty of Chemical and Food Technology Slovak University of Technology in Bratislava Radlinského 9 SK 812 37 Bratislava Slovak Republic

Department of Analytical Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina Ilkovičova 6 SK 842 15 Bratislava 4 Slovak Republic

Department of Environmental Engineering Faculty of Chemical and Food Technology Slovak University of Technology in Bratislava Radlinského 9 SK 812 37 Bratislava Slovak Republic

Department of Inorganic Technology Institute of Inorganic Chemistry Technology and Materials Faculty of Chemical and Food Technology Slovak University of Technology in Bratislava Radlinského 9 SK 812 37 Bratislava Slovak Republic

Department of Molecular Biology Faculty of Natural Sciences Comenius University Ilkovičova 6 842 15 Bratislava Slovakia

Department of Polymer Processing Faculty of Chemical and Food Technology Slovak University of Technology in Bratislava Krškanská 21 SK 949 01 Nitra Slovak Republic

Department of Zoology and Fisheries Faculty of Agrobiology Food and Natural Resources Czech University of Life Sciences Prague Kamýcka 129 165 00 Praha 6 Suchdol Czech Republic

Institute of Molecular Biomedicine Faculty of Medicine Comenius University in Bratislava Sasinkova 4 SK 811 08 Bratislava Slovak Republic

Institute of Pathophysiology Faculty of Medicine Comenius University Sasinkova 4 811 08 Bratislava Slovakia

Regional Centre of Advanced Technologies and Materials Palacký University Olomouc Šlechtitelů 27 CZ 783 71 Olomouc Czech Republic

South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses Faculty of Fisheries and Protection of Waters University of South Bohemia in České Budějovice Zátiší 728 2 CZ 389 25 Vodňany Czech Republic

Zobrazit více v PubMed

Ahmed W., Angel N., Edson J., Bibby K., Bivins A., O’Brien J.W., Choi P.M., Kitajima M., Simpson S.L., Li J., Tscharke B., Verhagen R., Smith W.J.M., Zaugg J., Dierens L., Hugenholtz P., Thomas K.V., Mueller J.F. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728 PubMed PMC

Reichert J.F., Souza D.M., Martins A.F. Antipsychotic drugs in hospital wastewater and a preliminary risk assessment. Ecotoxicol. Environ. Saf. 2019;170:559–567. PubMed

Kummerer K. Antibiotics in the aquatic environment–a review–part I. Chemosphere. 2009;75:417–434. PubMed

Mikhael E.M., Al-Jumaili A.A. Can developing countries alone face corona virus? An Iraqi situation. Public Health Pract. 2020;1 PubMed PMC

Mackuľak T., Grabic R., Špalková V., Belišová N., Škulcová A., Slavík O., Horký P., Gál M., Filip J., Híveš J., Vojs M., Staňová A. Vojs, Medveďová A., Marton M., Birošová L. Hospital wastewaters treatment: fenton reaction vs. BDDE vs. ferrate(VI) Environ. Sci. Pollut. Res. 2019;26:31812–31821. PubMed

Xagoraraki I., O’Brien E. In: Women in Water Quality, Women in Engineering and Science. O’Bannon S.J., editor. Springer Nature; Switzerland AG: 2020. Wastewater-based epidemiology for early detection of viral outbreak; pp. 75–97.

Tian Y., Rong L., Nian W., He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther. 2020;51:843–851. PubMed PMC

Kampf G., Todt D., Pfaender S., Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020;104:246–251. PubMed PMC

Pan Y., Zhang D., Yang P., Poon L.L.M., Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020;20:411–412. PubMed PMC

Woelfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Mueller M.A., Niemeyer D., Vollmar P., Rothe C., Hoelscher M., Bleicker T., Bruenink S., Schneider J., Ehmann R., Zwirglmaier K., Drosten C., Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469. doi: 10.1101/2020.03.05.20030502. PubMed DOI

Chen C., Gao G., Xu Y., Pu L., Wang Q., Wang L., Wang W., Song Y., Chen M., Wang L., Yu F., Yang S., Tang Y., Zhao L., Wang H., Wang Y., Zeng H., Zhang F. SARS-CoV-2–positive sputum and feces after conversion of pharyngeal samples in patients with COVID-19, Ann. Intern. Med. 2020 doi: 10.7326/M20-0991. PubMed DOI PMC

Lescure F.X., Bouadma L., Nguyen D., Parisey M., Wicky P.H., Behillil S., Gaymard A., Bouscambert-Duchamp M., Donati F., Hingrat Q. Le, Enouf V., Houhou-Fidouh N., Valette M., Mailles A., Lucet J.C., Mentre F., Duval X., Descamps D., Malvy D., Timsit J.F., Lina B., Werf S. van der, Yazdanpanah Y. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect. Dis. 2020;20:697–706. doi: 10.1016/S1473-3099(20)30200-0. PubMed DOI PMC

Gupta S., Parker J., Smits S., Underwood J., Dolwani S. Persistent viral shedding of SARS-CoV-2 in faeces - a rapid review. Color. Dis. 2020;22:611–620. doi: 10.1111/codi.15138. PubMed DOI PMC

Kocamemi B.A., Kurt H., Hacioglu S., Yarali C., Saatci A.M., Pakdemirli B. First data-set on SARS-CoV-2 detection for Istanbul wastewaters in Turkey. medRxiv. 2020 doi: 10.1101/2020.05.03.20089417. DOI

Randazzo W., Cuevas-Ferrando E., Sanjuan R., Domingo-Calap P., Sanchez G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. medRxiv. 2020 doi: 10.1101/2020.04.23.20076679. PubMed DOI PMC

Bar-Or I., Yaniv K., Shagan M., Ozer E., Erster O., Mendelson E., Mannasse B., Shirazi R., Kramarsky-Winter E., Nir O., Abu-Ali H., Ronen Z., Rinott E., Lewis Y.E., Friedler E., Birkover E., Paitan Y., Berchenko Y., Kushmaro A. Regressing SARS-CoV-2 sewage measurements onto COVID-19 burden in the population: a proof-of-concept for quantitative environmental surveillance. medRxiv. 2020 doi: 10.1101/2020.04.26.20073569. PubMed DOI PMC

Wurtzer S., Marechal V., Mouchel J.M., Maday Y., Teyssou R., Richard E., Almayrac J.L., Moulin L. Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. medRxiv. 2020 doi: 10.1101/2020.04.12.20062679. PubMed DOI PMC

Mackuľak T., Brandeburová P., Grenčíková A., Bodík I., Vojst-Staňová A., Golovko O., Koba O., Mackuľaková M., Špalková V., Gál M., Grabic R. Music festivals and drugs: wastewater analysis. Sci. Total Environ. 2019;659:326–334. PubMed

Mackuľak T., Černanský S., Fehér M., Bírošová L., Gál M. Pharmaceuticals, drugs, and resistant microorganisms—environmental impact on population health. Curr. Opin. Environ. Sci. Health. 2019;9:40–48.

Xie H., Hao H., Xu N., Liang X., Gao D., Xu Y., Gao Y., Tao H., Wong M. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: occurrence, distribution, potential sources, and health risk assessment. Sci. Total Environ. 2019;659:230–239. PubMed

Pal R., Megharaj M., Kirkbride K.P., Naidu R. Illicit drugs and the environment – a review. Sci. Total Environ. 2013;463-464:1079–1092. PubMed

Aziz K.H.H., Miessner H., Mueller S., Kalass D., Moeller D., Khorshid I., Rashid M.A.M. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem. Eng. J. 2017;313:1033–1041.

Henry-Chase A., Tewari B.B. Use to ferrate (VI) a green chemical for the environment remediation. Rev. Boliv. Quim. 2013;30:13–23.

Sharma V.K. Potassium ferrate(VI): an environmentally friendly oxidant, Adv. Environ. Res. 2002;6:143–156.

Czölderová M., Behúl M., Filip J., Zajíček P., Grabic R., Vojs-Staňová A., Gál M., Kerekeš K., Híveš J., Ryba J., Rybanská M., Brandeburová P., Mackuľak T. 3D printed polyvinyl alcohol ferrate(VI) capsules: effective means for the removal of pharmaceuticals and illicit drugs from wastewater. Chem. Eng. J. 2018;349:269–275.

Chen B., Kuo H., Sharma V.K., Den W. Chitosan encapsulation of ferrateVI for controlled release to water: mechanistic insights and degradation of organic contaminant, Sci. Rep. 2019;9:18268. PubMed PMC

Acter T., Uddin N., Das J., Akhter A., Choudhury T.R., Kim S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: a global health emergency. Sci. Total Environ. 2020;730 PubMed PMC

Mackuľak T., Bírošová L., Bodík I., Grabic R., Takáčová A., Smolinská M., Hanusová A., Híveš J., Gál M. Zerovalent iron and iron(VI): effective means for the removal of psychoactive pharmaceuticals and illicit drugs from wastewaters. Sci. Total Environ. 2016;539:420–426. PubMed

Wu F., Xiao A., Zhang J., Gu X., Lee W.L., Kauffman K., Hanage W., Matus M., Ghaeli N., Endo N., Duvallet C., Moniz K., Erickson T., Chai P., Thompson J., Alm E. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. medRxiv. 2020 doi: 10.1101/2020.04.05.20051540. PubMed DOI PMC

Mackuľak T., Nagyová K., Faberová M., Grabic R., Koba O., Gál M., Birošová L. Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP. Environ. Toxicol. Pharmacol. 2015;40:492–497. PubMed

www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf (online 4.5.2021)

Mackuľak T., Medvecká E., Staňová A.V., Brandeburová P., Grabic R., Golovko O., Marton M., Bodík I., Medveďová A., Gál M., Planý M., Kromka A., Špalková V., Škulcová A., Horáková I., Vojs M. Boron doped diamond electrode – the elimination of psychoactive drugs and resistant bacteria from wastewater. Vacuum. 2019;171

Wang J., Feng H., Zhang S., Ni Z., Ni L., Chen Y., Zhuo L., Zhong Z., Qu T. SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the coronavirus disease 2019 outbreak in a Chinese hospital. Int. J. Infect. Dis. 2020;94:103–106. PubMed PMC

N. A. Lerminiaux, A. D. S. Cameron. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 65(1) 34–44. PubMed

Wang X.W., Li J.S., Guo T.K., Zhen B., Kong Q.X., Yi B., Li Z., Song N., Jin M., Xiao W.J., Zhu X.M. Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th hospital. J. Virol. Methods. 2005;128:156–161. PubMed PMC

Chan J.F., Yuan S., Kok K.H., To K.K., Chu H., Liu J. Yang F. Xing J., Yip C.C., Poon R.W., Tsoi H.W. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523. PubMed PMC

Bollmann A.F., Seitz W., Prasse C., Lucke T., Schulz W., Ternes T. Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. J. Hazard. Mater. 2016;320:204–215. PubMed

Choi P.M., O’Brien J.W., Li J., Jiang G., Thomas K.V., Mueller J.F. Population histamine burden assessed using wastewater-based epidemiology: the association of 1, 4-methylimidazole acetic acid and fexofenadine. Environ. Int. 2018;120:172–180. PubMed

Zhang D., Ling H., Huang X., Li J., Li W., Yi C., Zhang T., Jiang Y., He Y., Deng S., Zhang X., Liu Y., Li G., Qu J. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci. Total Environ. 2020;741:140445. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...