Macrocyclic glycopeptide-based chiral selectors for enantioseparation in sub/supercritical fluid chromatography
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38715744
PubMed Central
PMC10989558
DOI
10.1002/ansa.202000099
PII: ANSA202000099
Knihovny.cz E-zdroje
- Klíčová slova
- chiral stationary phase, enantioseparation, macrocyclic glycopeptide, sub/supercritical fluid chromatography,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Increasing number of reported works dealing with macrocyclic glycopeptide-based columns in sub/supercritical fluid chromatography (SFC) points to the growing interest in this area. With the development and production of sub 2 µm fully porous particles and superficially porous particles with bonded macrocyclic glycopeptides, significant improvements have been made in ultrafast high efficiency chiral SFC. This review article gives an overview of macrocyclic glycopeptide-based chiral selectors that were used in theoretical studies and/or applications in SFC. The review covers the period from 1997 when macrocyclic glycopeptides were first used in SFC till the end of July 2020 according to Web of Science. This work can also be helpful to analysts searching for an appropriate method for the separation/determination of enantiomers of their interest.
Zobrazit více v PubMed
Lin J, Tsang C, Lieu R, Zhang K. Method screening strategies of stereoisomers of compounds with multiple chiral centers and a single chiral center. J Chromatogr A. 2020;1624:461244. PubMed
Kalíková K, Martínková M, Schmid MG, Tesařová E. Cellulose tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase for the enantioseparation of drugs in fluid chromatography: comparison with HPLC. J Sep Sci. 2018;41:1471‐1478. PubMed
De Klerck K, Mangelings D, Clicq D, De Boever F, Vander Heyden Y. Combined use of isopropylamine and trifluoroacetic acid in methanol‐containing mobile phases for chiral supercritical fluid chromatography. J Chromatogr A. 2012;1234:72‐79. PubMed
Lesellier E. Usual, unusual and unbelievable retention behavior in achiral supercritical fluid chromatography: review and discussion. J Chromatogr A. 2020;1614:460582. PubMed
Akbal L, Hopfgartner G. Hyphenation of packed column supercritical fluid chromatography with mass spectrometry: where are we and what are the remaining challenges?. Anal Bioanal Chem. 2020;412:6667‐6677. PubMed
Pilařová V, Plachká K, Khalikova MA, Svec F, Nováková L. Recent developments in supercritical fluid chromatography‐mass spectrometry: is it a viable option for analysis of complex samples?. Trends Anal Chem. 2019;112:212‐225.
López‐Ruiz R, Romero‐González R, Frenich A. Ultrahigh‐pressure liquid chromatography‐mass spectrometry: an overview of the last decade. Trends Anal Chem. 2019;118:170‐181.
Broeckhoven K, Desmet G. Methods to determine the kinetic performance limit of contemporary chromatographic techniques. J Sep Sci. 2020. 10.1002/jssc.202000779. in press. PubMed DOI
He P, Zhang Y, Zhou Y, Li G, Zhang J, Feng X. Supercritical fluid chromatography‐a technical overview and its applications in medicinal plant analysis: an update covering 2012‐2018. Analyst. 2019;144:5324. PubMed
Pandya PA, Shah PA, Shrivastav S. Analytical separation of four stereoisomers of luliconazole using supercritical fluid chromatography:thermodynamic aspects and simulation study with chiral stationary phase. J Chromatogr A. 2020;1625:461299. PubMed
Glenne E, Samuelsson J, Leek H, Forssén P, Klarqvist M, Fornstedt T. Systematic investigations of peak distortions due to additives in supercritical fluid chromatography. J Chromatogr A. 2020;1621:461048. PubMed
Thompson R. A practical guide to HPLC enantioseparations for pharmaceutical compounds. J Liq Chromatogr Relat Technol. 2005;28:1215‐1231.
Sýkora D, Vozka J, Tesařová E, et al. Immobilized strychnine as a new chiral stationary phase for HPLC. Electrophoresis. 2017;38(15):1956‐1963. PubMed
Kalikova K, Slechtova T, Tesarova E. Cyclic oligosaccharide‐based chiral stationary phases applicable to drug purity control: a review. Curr Med Chem. 2017;24(8):829‐848. PubMed
Carenzi G, Sacchi S, Abbondi M, Pollegioni L. Direct chromatographic methods for enantioresolution of amino acids: recent developments. Amino Acids. 2020;52:849‐862. PubMed
Yu RB, Quirino JP. Chiral liquid chromatography and capillary electrochromatography: trends from 2017 to 2018. Trends Anal Chem. 2019;118:779‐792.
Ilisz I, Berkecz R, Péter A. HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic‐based chiral stationary phases: a review. J Sep Sci. 2006;29(10):1305‐1321. PubMed
Cardoso PA, César IC. Chiral method development strategies for HPLC using macrocyclic glycopeptide‐based stationary phases. Chromatographia. 2018;81(6):841‐850.
Ilisz I, Berkecz R, Péter A. Retention mechanism of high‐performance liquid chromatographic enantioseparation on macrocyclic glycopeptide‐based chiral stationary phases. J Chromatogr A. 2009;1216(10):1845‐1860. PubMed
Riesová M, Geryk R, Kalíková K, et al. Direct CE and HPLC methods for enantioseparation of tryptophan and its unnatural derivatives. Sep Pur Tech. 2016;158:24‐30.
Orosz T, Grecso N, Lajko G, et al. Liquid chromatographic enantioseparation of carbocyclic beta‐amino acids possessing limonene skeleton on macrocyclic glycopeptide‐based chiral stationary phases. J Pharm Biomed Anal. 2017;145:119‐126. PubMed
Fanali S. Nano‐liquid chromatography applied to enantiomers separation. J Chromatogr A. 2017;1486:20‐34. PubMed
Kalíková K, Riesová M, Tesařová E. Recent chiral selectors for separation in HPLC and CE. Cent Eur J Chem. 2012;10(3):450‐471.
Maier V, Ranc V, Švidrnoch M, et al. Study on the use of boromycin as a chiral selector in capillary electrophoresis. J Chromatogr A. 2012;1237:128‐132. PubMed
Shapovalova EN, Fedorova IA, Anan'eva IA, Shpigun OA. Macrocyclic antibiotics as chiral selectors in high performance liquid chromatography and capillary electrophoresis. J Anal Chem. 2018;73(11):1064‐1075.
Kalíková K, Šlechtová T, Vozka J, Tesařová E. Supercritical fluid chromatography as a tool for enantioselective separation; a review. Anal Chim Acta. 2014;821:1‐33. PubMed
West C. Recent trends in chiral supercritical fluid chromatography. Trends Anal Chem. 2019;120:115648.
Harps LC, Joseph JF, Parr MK. SFC for chiral separations in bioanalysis. J Pharm Biomed Anal. 2019;162:47‐59. PubMed
Parr MK, Blokland MH, Liebetrau F, et al. Distinction of clenbuterol intake from drug or contaminated food of animal origin in a controlled administration trial ‐ the potential of enantiomeric separation for doping control analysis. Food Addit Contam: Part A. 2017;34(4):525‐535. PubMed
Vlčková Kočová H, Pilařová V, Svobodová P, Plíšek J, Švec F, Nováková L. Current state of bioanalytical chromatography in clinical analysis. Analyst. 2018;143(6):1305‐1325. PubMed
De Klerck K, Mangelings D, Vander Heyden Y. Supercritical fluid chromatography for the enantioseparation of pharmaceuticals. J Pharm Biomed Anal. 2012;69:77‐92. PubMed
Płotka JM, Biziuk M, Morrison C, Namieśnik J. Pharmaceutical and forensic drug applications of chiral supercritical fluid chromatography. Trends Anal Chem. 2014;56:74‐89.
Lemasson E, Bertin S, West C. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification. J Sep Sci. 2016;39(1):212‐233. PubMed
Liu Y, Berthod A, Mitchell CR, Xiao TL, Zhang B, Armstrong DW. Super/subcritical fluid chromatography chiral separations with macrocyclic glycopeptide stationary phases. J Chromatogr A. 2002;978(1‐2):185‐204. PubMed
Felletti S, Ismail OH, De Luca C, et al. Recent achievements and future challenges in supercritical fluid chromatography for the enantioselective separation of chiral pharmaceuticals. Chromatographia 2019;82(1):65‐75.
Schmid MG, Hägele JS. Separation of enantiomers and positional isomers of novel psychoactive substances in solid samples by chromatographic and electrophoretic techniques – A selective review. J Chromatogr A. 2020;1624:461256. PubMed
Scriba GKE. Chiral recognition in separation sciences. Part II: macrocyclic glycopeptide, donor‐acceptor, ion‐exchange, ligand‐exchange and micellar selectors. Trends Anal Chem. 2019;119:115628.
Barhate CL, Lopez DA, Makarov AA, et al. Macrocyclic glycopeptide chiral selectors bonded to core‐shell particles enables enantiopurity analysis of the entire verubecestat synthetic route. J Chromatogr A. 2018;1539:87‐92. PubMed
Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR. Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal Chem. 1994;66(9):1473‐1484.
Medvedovici A, Sandra P, Toribio L, David F. Chiral column subcritical fluid chromatography on polysaccharide and macrocyclic antiobiotic chiral stationary phases. J Chromatogr A. 1997;785(1‐2):159‐171.
Armstrong DW, Liu Y, Ekborgott KH. A covalently bonded teicoplanin chiral stationary phase for HPLC enantioseparations. Chirality. 1995;7(6):474‐497.
Liu Y, Lantz AW, Armstrong DW. High efficiency liquid and super‐/subcritical fluid‐based enantiomeric separations: an overview. J Liq Chromatogr Relat Technol. 2004;27(7‐9):1121‐1178.
Lämmerhofer M. Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A. 2010;1217(6):814‐856. PubMed
Asnin L. Adsorption models in chiral chromatography. J Chromatogr A. 2012;1269:3‐25. PubMed
Kalíková K, Lokajová J, Tesařová E. Linear free energy as a tool for characterization of three teicoplanin‐based chiral stationary phases under various mobile phase compositions. J Sep Sci. 2006;29(10):1476‐1485. PubMed
Cavazzini A, Nadalini G, Dondi F, Gasparrini F, Ciogli A, Villani C. Study of mechanisms of chiral discrimination of amino acids and their derivatives on a teicoplanin‐based chiral stationary phase. J Chromatogr A. 2004;1031(1‐2):143‐158. PubMed
Roy D, Armstrong DW. Fast super/subcritical fluid chromatographic enantioseparations on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous particles. J Chromatogr A. 2019;1605:360339. PubMed
Roy D, Wahab MF, Berger TA, Armstrong DW. Ramifications and insight on the role of water in chiral sub/supercritical fluid chromatography. Anal Chem. 2019;91(22):14672‐14680. PubMed
Barhate CL, Joyce LA, Makarov AA, et al. Ultrafast chiral separations for high throughput enantiopurity analysis. Chem Commun. 2017;53(3):509‐512. PubMed
Barhate CL, Wahab MF, Breitbach ZS, Bell DS, Armstrong DW. High efficiency, narrow particle size distribution, sub‐2 µm based macrocyclic glycopeptide chiral stationary phases in HPLC and SFC. Anal Chim Acta. 2015;898:128‐137. PubMed
Ismail OH, Ciogli A, Villani C, et al. Ultra‐fast high‐efficiency enantioseparations by means of a teicoplanin‐based chiral stationary phase made on sub‐2 µm totally porous silica particles of narrow size distribution. J Chromatogr A. 2016;1427:55‐68. PubMed
Spudeit DA, Dolzan MD, Breitbach ZS, Barber WE, Micke GA, Armstrong DW. Superficially porous particles vs. fully porous particles for bonded high performance liquid chromatographic chiral stationary phases:isopropyl cyclofructan 6. J Chromatogr A. 2014;1363:89‐95. PubMed
Min Y, Sui Z, Liang Z, Zhang L, Zhang Y. Teicoplanin bonded sub‐2 µm superficially porous particles for enantioseparation of native amino acids. J Pharm Biomed Anal. 2015;114:247‐253. PubMed
Ismail OH, Felletti S, De Luca C, et al. The way to ultrafast, high‐throughput enantioseparations of bioactive compounds in liquid and supercritical fluid chromatography. Molecules. 2018;23(10):2709. PubMed PMC
Gritti F, Guiochon G. Possible resolution gain in enantioseparations afforded by core‐shell particle technology. J Chromatogr A. 2014;1348:87‐96. PubMed
Breitbach ZS. High efficiency chiral separations in HPLC and SFC. LC GC N Am. 2018;36(2):137‐139.
Lomsadze K, Jibuti G, Farkas T, Chankvetadze B. Comparative high‐performance liquid chromatography enantioseparations on polysaccharide based chiral stationary phases prepared by coating totally porous and core‐shell silica particles. J Chromatogr A. 2012;1234:50‐55. PubMed
Cabooter D, Fanigliulo A, Bellazzi G, Allieri B, Rottigni A, Desmet G. Relationship between the particle size distribution of commercial fully porous and superficially porous high‐liquid chromatography column packings and their chromatographic performance. J Chromatogr A. 2010;1217:7074‐7081. PubMed
Gritti F, Sanchez CA, Farkas T, Guiochon G. Achieving the full performance of highly efficient columns by optimizing conventional benchmark high‐performance liquid chromatography instruments. J Chromatogr A. 2010;1217:3000‐3012. PubMed
Hayes R, Ahmed A, Edge T, Zhang H. Core‐shell particles: preparation, fundamentals and application in high performance liquid chromatography. J Chromatogr A. 2014;1357:36‐52. PubMed
Ciogli A, Ismail OH, Mazzoccanti G, Villani C, Gasparrini F. Enantioselective ultra high performance liquid and supercritical fluid chromatography: the race to the shortest chromatogram. J Sep Sci. 2018;41:1307‐1318. PubMed
DeStefano JJ, Schuster SF, Lawhorn JM, Kirkland JJ. Performance characteristics of new superficially porous particles. J Chromatogr A. 2012;1258:76‐83. PubMed PMC
Podgornik A. Pressure drop in liquid chromatography. J Sep Sci. 2019;42:72‐88. PubMed
Khater S, West C. Characterization of three macrocyclic glycopeptide stationary phases in supercritical fluid chromatography. J Chromatogr A. 2019;1604:460485. PubMed
Raimbault A, West C. Effects of high concentrations of mobile phase additives on retention and separation mechanism on a teicoplanin aglycone stationary phase in supercritical fluid chromatography. J Chromatogr A. 2019;1604:460494. PubMed
D'Acquarica I, Gasparrini F, Misiti D, et al. Direct chromatographic resolution of carnitine and O‐acylcarnitine enantiomers on a teicoplanin‐bonded chiral stationary phase. J Chromatogr A. 1999;857(1‐2):145‐155. PubMed
Felix G, Berthod A, Piras P, Roussel C. Commercial chiral stationary phases for the separations of clinical racemic drugs. Part III: supercritical fluid chromatographic separations. Sep Purif Rev. 2008;37(3):229‐301.
Khater S, West C. Insights into chiral recognition mechanisms in supercritical fluid chromatography V. Effect of the nature and proportion of alcohol mobile phase modifier with amylose and cellulose tris‐(3,5‐dimethylphenylcarbamate) stationary phases. J Chromatogr A. 2014;1373:197‐210. PubMed
Nováková L, Douša M. General screening and optimization strategy for fast chiral separations in modern supercritical fluid chromatography. Anal Chim Acta. 2017;950:199‐210. PubMed
Kozlov O, Kadlecová Z, Tesařová E, Kalíková K. Evaluation of separation properties of stationary phases in supercritical fluid chromatography; deazapurine nucleosides case study. Microchem J. 2019;150:104137.
Vaňkátová P, Kubíčková A, Cigl M, Kalíková K. Ultra‐performance chromatographic methods for enantioseparation of liquid crystals based on lactic acid. J Supercrit Fluids. 2019;146:217‐225.
Jakubec P, Douša M, Nováková L. Supercritical fluid in chiral separations: evaluation of equivalency of polysaccharide stationary phases. J Sep Sci. 2020;43(13):2675‐2689. PubMed
Patel DC, Wahab MF, Armstrong DW, Breitbach ZS. Advances in high‐throughput and high‐efficiency chiral liquid chromatographic separations. J Chromatogr A. 2016;1467:2‐18. PubMed
Folprechtová D, Kozlov O, Armstrong DW, Schmid MG, Kalíková K, Tesařová E. Enantioselective potential of teicoplanin‐ and vancomycin‐based superficially porous particles‐packed columns for supercritical fluid chromatography. J Chromatogr A. 2020;1612:460687. PubMed
Vaňkátová P, Folprechtová D, Kalíková K, Kubíčková A, Armstrong DW, Tesařová E. Enantiorecognition ability of different chiral selectors for separation of liquid crystals in supercritical fluid chromatography; critical evaluation. J Chromatogr A. 2020;1622:461138. PubMed
Segawa H, Kusakabe K, Ishii A, et al. Differentiation of ‐substituted regioisomers of cathinone analogs by supercritical fluid chromatography. Anal Sci Adv. 2020;1(1):22‐33. PubMed PMC
Roy D, Wahab MF, Talebi M, Armstrong DW. Replacing methanol with azeotropic ethanol as the co‐solvent for improved chiral separations with supercritical fluid chromatography (SFC). Green Chem. 2020;22(4):1249‐1257.
Speybrouck D, Lipka E. Preparative supercritical fluid chromatography: a powerful tool for chiral separations. J Chromatogr A. 2016;1467:33‐35. PubMed
Tarafder A, Hudalla C, Iraneta P, Fountain KJ. A scaling rule in supercritical fluid chromatography. I. Theory for isocratic systems. J Chromatogr A. 2014;1362:278‐293. PubMed
Rajendran A. Design of preparative‐supercritical fluid chromatography. J Chromatogr A. 2012;1250:227‐249. PubMed
Tarafder A, Hill JF. Scaling rule in SFC. II. A practical rule isocratic systems. J Chromatogr A. 2017;1482:65‐75. PubMed
West C, Lemasson E. Unravelling the effects of mobile phase additives in supercritical fluid chromatography – Part II: adsorption on the stationary phase. J Chromatogr A. 2019;1593:135‐146. PubMed
Blackwell JA, Stringham W, Weckwerth JD. Effect of mobile phase additives in packed‐column subcritical and supercritical fluid chromatography. Anal Chem. 1997;69:409‐415. PubMed
West C, Melin J, Ansouri H, Metogo MM. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: polarity and acidity of the mobile phase. J Chromatogr A. 2017;1492:136‐143. PubMed
Kucerova G, Kalikova K, Tesarova E. Enantioselective potential of polysaccharide‐based chiral stationary phases in supercritical fluid chromatography. Chirality. 2017;29(6):239‐246. PubMed
Ren‐Qi W, Teng‐Teng O, Siu‐Choon N, Weihua T. Recent in pharmaceutical separations with supercritical fluid chromatography using chiral stationary phases. Trends Anal Chem. 2012;37:83‐100.
Phinney KW, Sander LC. Additive concentration effects on enantioselective separations in supercritical fluid chromatography. Chirality. 2003;15(4):287‐294. PubMed
Kalíková K, Geryk R, Vozka J, Tesařová E. Evaluation of differences between Chiralpak IA and Chiralpak AD‐RH amylose‐based chiral stationary phases in reversed‐phase high‐performance liquid chromatography. J Sep Sci. 2015;38:711‐719. PubMed
Lavison G, Thiébaut D. Evaluation of a ristocetin bonded stationary phase for subcritical fluid chromatography of enantiomers. Chirality. 2003;15(7):630‐636. PubMed
Liu J, Regalado EL, Mergelsberg I, Welch CJ. Extending the range of supercritical fluid chromatography by use of water‐rich modifiers. Org Biomol Chem. 2003;11(30):4925‐4929. PubMed
Bennet R, Biba M, Liu J, Ahmad IAH, Hicks MB, Regalado EL. Enhanced fluidity liquid chromatography: a guide to scaling up from analytical to preparative separations. J Chromatogr A. 2019;1595:190‐198. PubMed
Hansen CM. The three dimensional solubility parameter, key to paint component affinities; solvents, plasticizers, polymers and resins. J Paint Technol. 1967;39:104‐117.
Liu J, Makarov AA, Bennett R, et al. Chaotropic effects in sub/supercritical fluid chromatography via ammonium hydroxide in water‐rich modifiers: enabling separation of peptides in highly polar pharmaceuticals at the preparative scale. Anal Chem. 2019;91(21):13907‐13915. PubMed
Khvalbota L, Roy D, Wahab MF, et al. Enhancing supercritical fluid chromatographic efficiency: predicting effects of small aqueous additives. Anal Chim Acta. 2020;1120:75‐84. PubMed
Wang C, Zhang Y. Effects of column back pressure on supercritical fluid chromatography separations of enantiomers using binary mobile phases on 10 chiral stationary phases. J Chromatogr A. 2013;1281:127‐134. PubMed
Rajendran A, Gilkison TS, Mazzotti M. Effect of pressure drop on solute retention and column efficiency in supercritical fluid chromatography Part 2: modified carbon dioxide as mobile phase. J Sep Sci. 2008;31:1279‐1289. PubMed
Asberg D, Enmark M, Samuelsson J, Fornstedt T. Evaluation of co‐solvent fraction, pressure and temperature effects in analytical and preparative supercritical fluid chromatography. J Chromatogr A. 2014;1374:254‐260. PubMed
Sun Q, Olesik SV. Chiral separations performed by enhanced‐fluidity liquid chromatography on a macrocyclic antibiotic chiral stationary phase. Anal Chem. 1999;71(11):2139‐2145. PubMed
Dönnecke J, Svensson LA, Gyllenhaal O, Karlsson KE, Karlsson A, Vessman J. Evaluation of a vancomycin chiral stationary phase in packed capillary supercritical fluid chromatography. J Microcolumn Sep. 1999;11(7):521‐533.
Sánchez‐Hernández L, Bernal JL, del Nozal MJ, Toribio L. Chiral analysis of aromatic amino acids in food supplements using subcritical fluid chromatography and Chirobiotic T2 column. J Supercrit Fluids. 2016;107:519‐525.
Svensson LA, Owens PK. Enantioselective supercritical fluid chromatography using Ristocetin A chiral stationary phase. Analyst. 2000;125:1037‐1039. PubMed
Liu Y, Rozhkov RV, Larock RC, Xiao TL, Armstrong DW. Fast super/subcritical fluid chromatography enantiomeric separations of dihydrofurocoumarin derivatives with macrocyclic glycopeptide stationary phases. Chromatographia. 2003;58(11):775‐779.
Phinney KW, Sander LC. Preliminary evaluation of a standard reference material for chiral stationary phases used in liquid and supercritical fluid chromatography. Anal Bioanal Chem. 2002;372(1):101‐108. PubMed
Wang Z, Jonca M, Lambros T, Ferguson S, Goodnow R. Exploration of liquid and supercritical fluid chromatographic chiral separation and purification of Nutlin‐3‐A small molecule antagonisto f MDM2. J Pharm Biomed Anal. 2007;45(5):720‐729. PubMed
Akin A, Antosz FJ, Ausec JL, et al. An orthogonal approach to chiral method development screening. Curr Pharm Anal. 2007;3(1):53‐70.
Johannsen M, Peper S, Depta A. Simulated moving bed chromatography with supercritical fluids for the resolution of bi‐naphthol enantiomers and phytol isomers. J Biochem Biophys Methods. 2002;54(1‐3):85‐102. PubMed
Welch CJ, Biba M, Gouker JR, Kath G, Augustine P, Hosek P. Solving multicomponent chiral separation challenges using a new SFC tandem column screening tool. Chirality. 2007;19(3):184‐189. PubMed
Regalado EL, Haidar Ahmad IA, Bennett R, et al. The emergence of universal chromatographic methods in the research and development of new drug substances. Acc Chem Res. 2019;52(7):1990‐2002. PubMed
Wang H, Lhotka HR, Bennet R, et al. Introducing online multicolumn two‐dimensional liquid chromatography screening for facile selection of stationary and mobile phase conditions in both dimensions. J Chromatogr A. 2020;1622:460895. PubMed
Mattrey FT, Makarov AA, Regalado EL, et al. Current challenges and future prospects in chromatographic method development for pharmaceutical research. Trends Anal Chem. 2017;95:36‐46.
Schafer W, Chandrasekaran T, Pirzada Z, et al. Improved chiral SFC screening for analytical method development. Chirality. 2013;25:799‐804. PubMed
Hicks MB, Regalado EL, Tan F, Gong X, Welch CJ. Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities. J Pharm Biomed Anal. 2016;117:316‐324. PubMed
Frantz JJ, Thurbide KB. Chiral separations using a modified water stationary phase in supercritical fluid chromatography. Chromatographia. 2018;81(7):969‐979.
Fogwill MO, Thurbide KB. Chromatography using a water stationary phase and a carbon dioxide mobile phase. Anal Chem. 2010;82(24):10060‐10067. PubMed
Declerck S, Vander Heyden Y, Mangelings D. Rendering a chiral screening step in supercritical fluid chromatography mass‐spectrometry compatible. J Chromatogr A. 2020;1624:461201. PubMed
Lin J, Tsang C, Lieu R, Zhang K. Method screening strategies of stereoisomers of compounds with multiple chiral centers and a single chiral center. J Chromatogr A. 2020;1624:461244. PubMed
Barhate CL, Wahab MF, Tognarelli DJ, Berger TA, Armstrong DW. Instrumental idiosyncrasies affecting the performance of ultrafast chiral and achiral sub/supercritical fluid chromatography. Anal Chem. 2016;88(17):8664‐8672. PubMed
Berger TA. Reduced plate height of 1.65 on a 20 × 3mm column packed with 1.8 µm particles in supercritical fluid chromatography (SFC). Chromatographia. 2019;82(6):971‐974.
Pokrovskiy OI, Kayda AS, Usovich OI, Parenago OO, Lunin VV. Effect of additives on eremomycin sorbent selectivity in separation of salbutamol enantiomers using supercritical fluid chromatography. Russ J Phys Chem. 2017;91:2288‐2290.