The Enantioselective Potential of NicoShell and TeicoShell Columns for Basic Pharmaceuticals and Forensic Drugs in Sub/Supercritical Fluid Chromatography

. 2023 Jan 26 ; 28 (3) : . [epub] 20230126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36770866

The enantioselective potential of two macrocyclic glycopeptide-based chiral stationary phases for analysis of 28 structurally diverse biologically active compounds such as derivatives of pyrovalerone, ketamine, cathinone, and other representatives of psychostimulants and antidepressants was evaluated in sub/supercritical fluid chromatography. The chiral selectors immobilized on 2.7 μm superficially porous particles were teicoplanin (TeicoShell column) and modified macrocyclic glycopeptide (NicoShell column). The influence of the organic modifier and different mobile phase additives on the retention and enantioresolution were investigated. The obtained results confirmed that the mobile phase additives, especially water as a single additive or in combination with basic and acidic additives, improve peak shape and enhance enantioresolution. In addition, the effect of temperature was evaluated to optimize the enantioseparation process. Both columns exhibited comparable enantioselectivity, approximately 90% of the compounds tested were enantioseparated, and 30% out of them were baseline enantioresolved under the tested conditions. The complementary enantioselectivity of the macrocyclic glycopeptide-based chiral stationary phases was emphasized. This work can be useful for the method development for the enantioseparation of basic biologically active compounds of interest.

Zobrazit více v PubMed

Berkecz R., Tanács D., Péter A., Ilisz I. Enantioselective Liquid Chromatographic Separations Using Macrocyclic Glycopeptide-Based Chiral Selectors. Molecules. 2021;26:3380. doi: 10.3390/molecules26113380. PubMed DOI PMC

Hancu G., Papp L.A., Szekely-Szentmiklosi B., Kelemen H. The Use of Antibiotics as Chiral Selectors in Capillary Electrophoresis: A Review. Molecules. 2022;27:3601. doi: 10.3390/molecules27113601. PubMed DOI PMC

Folprechtová D., Kalíková K. Macrocyclic Glycopeptide-Based Chiral Selectors for Enantioseparation in Sub/Supercritical Fluid Chromatography. Anal. Sci. Adv. 2021;2:15–32. doi: 10.1002/ansa.202000099. PubMed DOI PMC

Kalíková K., Šlechtová T., Vozka J., Tesařová E. Supercritical Fluid Chromatography as a Tool for Enantioselective Separation; A Review. Anal. Chim. Acta. 2014;821:1–33. doi: 10.1016/j.aca.2014.02.036. PubMed DOI

Mangelings D., Eeltink S., Vander Heyden Y. Chapter 9—Recent Developments in Liquid and Supercritical Fluid Chromatographic Enantioseparations. In: Valkó K.L., editor. Handbook of Analytical Separations. Volume 8. Elsevier Science B.V.; Amsterdam, The Netherlands: 2020. pp. 453–521. Separation Methods in Drug Synthesis and Purification.

Folprechtová D., Kozlov O., Armstrong D.W., Schmid M.G., Kalíková K., Tesařová E. Enantioselective Potential of Teicoplanin- and Vancomycin-Based Superficially Porous Particles-Packed Columns for Supercritical Fluid Chromatography. J. Chromatogr. A. 2020;1612:460687. doi: 10.1016/j.chroma.2019.460687. PubMed DOI

Scriba G.K.E. Chiral Recognition in Separation Sciences. Part II: Macrocyclic Glycopeptide, Donor-Acceptor, Ion-Exchange, Ligand-Exchange and Micellar Selectors. TrAC Trends Anal. Chem. 2019;119:115628. doi: 10.1016/j.trac.2019.115628. DOI

Khater S., West C. Characterization of Three Macrocyclic Glycopeptide Stationary Phases in Supercritical Fluid Chromatography. J. Chromatogr. A. 2019;1604:460485. doi: 10.1016/j.chroma.2019.460485. PubMed DOI

Zhang J.-H., Xie S.-M., Yuan L.-M. Recent Progress in the Development of Chiral Stationary Phases for High-Performance Liquid Chromatography. J. Sep. Sci. 2022;45:51–77. doi: 10.1002/jssc.202100593. PubMed DOI

Schmid M.G., Hägele J.S. Separation of Enantiomers and Positional Isomers of Novel Psychoactive Substances in Solid Samples by Chromatographic and Electrophoretic Techniques—A Selective Review. J. Chromatogr. A. 2020;1624:461256. doi: 10.1016/j.chroma.2020.461256. PubMed DOI

Ismail O.H., Felletti S., Luca C.D., Pasti L., Marchetti N., Costa V., Gasparrini F., Cavazzini A., Catani M. The Way to Ultrafast, High-Throughput Enantioseparations of Bioactive Compounds in Liquid and Supercritical Fluid Chromatography. Molecules. 2018;23:2709. doi: 10.3390/molecules23102709. PubMed DOI PMC

Roskam G., van de Velde B., Gargano A., Kohler I. Supercritical Fluid Chromatography for Chiral Analysis, Part 2: Applications. LCGC Eur. 2022;35:118–128. doi: 10.56530/lcgc.eu.fn8374q5. DOI

Kalíková K., Folprechtová D., Kadlecová Z. Sub/superkritická fluidní chromatografie pro analýzu chirálních sloučenin. Chem. Listy. 2022;116:146–151. doi: 10.54779/chl20220146. DOI

Losacco G.L., DaSilva J.O., Haidar Ahmad I.A., Mangion I., Berger T.A., Regalado E.L. Parallel Chiral Sub/Supercritical Fluid Chromatography Screening as a Framework for Accelerated Purification of Pharmaceutical Targets. J. Chromatogr. A. 2022;1674:463094. doi: 10.1016/j.chroma.2022.463094. PubMed DOI

Harps L.C., Joseph J.F., Parr M.K. SFC for Chiral Separations in Bioanalysis. J. Pharm. Biomed. Anal. 2019;162:47–59. doi: 10.1016/j.jpba.2018.08.061. PubMed DOI

West C. Recent Trends in Chiral Supercritical Fluid Chromatography. TrAC Trends Anal. Chem. 2019;120:115648. doi: 10.1016/j.trac.2019.115648. DOI

Roskam G., van de Velde B., Gargano A., Kohler I. Supercritical Fluid Chromatography for Chiral Analysis, Part 1: Theoretical Background. LCGC Eur. 2022;35:83–92. doi: 10.56530/lcgc.eu.ou1980m2. DOI

Kolderová N., Neveselý T., Šturala J., Kuchař M., Holakovský R., Kohout M. Enantioseparation of Chiral Sulfoxides on Amylose-Based Columns: Comparison of Normal Phase Liquid Chromatography and Supercritical Fluid Chromatography. Chromatographia. 2017;80:547–557. doi: 10.1007/s10337-016-3234-6. DOI

Roy D., Tarafder A., Miller L. Effect of Water Addition to Super/Sub-Critical Fluid Mobile-Phases for Achiral and Chiral Separations. TrAC Trends Anal. Chem. 2021;145:116464. doi: 10.1016/j.trac.2021.116464. DOI

Gazárková T., Plachká K., Svec F., Nováková L. Current State of Supercritical Fluid Chromatography-Mass Spectrometry. TrAC Trends Anal. Chem. 2022;149:116544. doi: 10.1016/j.trac.2022.116544. PubMed DOI

West C. Optimization in HPLC. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2021. Optimization Strategies in Packed- C Olumn Supercritical Fluid Chromatography (SFC) pp. 87–105.

Roy D., Tarafder A., Miller L. Additives in Chiral Packed Column Super/Subcritical Fluid Chromatography: A Little Goes a Long Way. J. Chromatogr. A. 2022;1676:463216. doi: 10.1016/j.chroma.2022.463216. PubMed DOI

Si-Hung L., Bamba T. Current State and Future Perspectives of Supercritical Fluid Chromatography. TrAC Trends Anal. Chem. 2022;149:116550. doi: 10.1016/j.trac.2022.116550. DOI

West C., Melin J., Ansouri H., Mengue Metogo M. Unravelling the Effects of Mobile Phase Additives in Supercritical Fluid Chromatography. Part I: Polarity and Acidity of the Mobile Phase. J. Chromatogr. A. 2017;1492:136–143. doi: 10.1016/j.chroma.2017.02.066. PubMed DOI

Roy D., Wahab M.F., Berger T.A., Armstrong D.W. Ramifications and Insights on the Role of Water in Chiral Sub/Supercritical Fluid Chromatography. Anal. Chem. 2019;91:14672–14680. doi: 10.1021/acs.analchem.9b03908. PubMed DOI

Khvalbota L., Roy D., Wahab M.F., Firooz S.K., Machyňáková A., Špánik I., Armstrong D.W. Enhancing Supercritical Fluid Chromatographic Efficiency: Predicting Effects of Small Aqueous Additives. Anal. Chim. Acta. 2020;1120:75–84. doi: 10.1016/j.aca.2020.04.065. PubMed DOI

Roy D., Farooq Wahab M., Talebi M., Armstrong D.W. Replacing Methanol with Azeotropic Ethanol as the Co-Solvent for Improved Chiral Separations with Supercritical Fluid Chromatography (SFC) Green Chem. 2020;22:1249–1257. doi: 10.1039/C9GC04207E. DOI

Folprechtová D., Kalíková K., Kadkhodaei K., Reiterer C., Armstrong D.W., Tesařová E., Schmid M.G. Enantioseparation Performance of Superficially Porous Particle Vancomycin-Based Chiral Stationary Phases in Supercritical Fluid Chromatography and High Performance Liquid Chromatography; Applicability for Psychoactive Substances. J. Chromatogr. A. 2021;1637:461846. doi: 10.1016/j.chroma.2020.461846. PubMed DOI

Roy D., Armstrong D.W. Fast Super/Subcritical Fluid Chromatographic Enantioseparations on Superficially Porous Particles Bonded with Broad Selectivity Chiral Selectors Relative to Fully Porous Particles. J. Chromatogr. A. 2019;1605:360339. doi: 10.1016/j.chroma.2019.06.060. PubMed DOI

Folprechtová D., Tesařová E., Kalíková K. The Effect of Tandem Coupling of NicoShell and TeicoShell Columns in Sub/Supercritical Fluid Chromatography on Enantioresolution. J. Sep. Sci. 2021;44:4048–4057. doi: 10.1002/jssc.202100501. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...