The Enantioselective Potential of NicoShell and TeicoShell Columns for Basic Pharmaceuticals and Forensic Drugs in Sub/Supercritical Fluid Chromatography
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36770866
PubMed Central
PMC9919078
DOI
10.3390/molecules28031202
PII: molecules28031202
Knihovny.cz E-zdroje
- Klíčová slova
- NicoShell, SFC, TeicoShell, basic bioactive compounds, enantioseparation, macrocyclic glycopeptides, superficially porous particles,
- MeSH
- glykopeptidy chemie MeSH
- léčivé přípravky MeSH
- stereoizomerie MeSH
- superkritická fluidní chromatografie * metody MeSH
- teikoplanin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykopeptidy MeSH
- léčivé přípravky MeSH
- teikoplanin MeSH
The enantioselective potential of two macrocyclic glycopeptide-based chiral stationary phases for analysis of 28 structurally diverse biologically active compounds such as derivatives of pyrovalerone, ketamine, cathinone, and other representatives of psychostimulants and antidepressants was evaluated in sub/supercritical fluid chromatography. The chiral selectors immobilized on 2.7 μm superficially porous particles were teicoplanin (TeicoShell column) and modified macrocyclic glycopeptide (NicoShell column). The influence of the organic modifier and different mobile phase additives on the retention and enantioresolution were investigated. The obtained results confirmed that the mobile phase additives, especially water as a single additive or in combination with basic and acidic additives, improve peak shape and enhance enantioresolution. In addition, the effect of temperature was evaluated to optimize the enantioseparation process. Both columns exhibited comparable enantioselectivity, approximately 90% of the compounds tested were enantioseparated, and 30% out of them were baseline enantioresolved under the tested conditions. The complementary enantioselectivity of the macrocyclic glycopeptide-based chiral stationary phases was emphasized. This work can be useful for the method development for the enantioseparation of basic biologically active compounds of interest.
Zobrazit více v PubMed
Berkecz R., Tanács D., Péter A., Ilisz I. Enantioselective Liquid Chromatographic Separations Using Macrocyclic Glycopeptide-Based Chiral Selectors. Molecules. 2021;26:3380. doi: 10.3390/molecules26113380. PubMed DOI PMC
Hancu G., Papp L.A., Szekely-Szentmiklosi B., Kelemen H. The Use of Antibiotics as Chiral Selectors in Capillary Electrophoresis: A Review. Molecules. 2022;27:3601. doi: 10.3390/molecules27113601. PubMed DOI PMC
Folprechtová D., Kalíková K. Macrocyclic Glycopeptide-Based Chiral Selectors for Enantioseparation in Sub/Supercritical Fluid Chromatography. Anal. Sci. Adv. 2021;2:15–32. doi: 10.1002/ansa.202000099. PubMed DOI PMC
Kalíková K., Šlechtová T., Vozka J., Tesařová E. Supercritical Fluid Chromatography as a Tool for Enantioselective Separation; A Review. Anal. Chim. Acta. 2014;821:1–33. doi: 10.1016/j.aca.2014.02.036. PubMed DOI
Mangelings D., Eeltink S., Vander Heyden Y. Chapter 9—Recent Developments in Liquid and Supercritical Fluid Chromatographic Enantioseparations. In: Valkó K.L., editor. Handbook of Analytical Separations. Volume 8. Elsevier Science B.V.; Amsterdam, The Netherlands: 2020. pp. 453–521. Separation Methods in Drug Synthesis and Purification.
Folprechtová D., Kozlov O., Armstrong D.W., Schmid M.G., Kalíková K., Tesařová E. Enantioselective Potential of Teicoplanin- and Vancomycin-Based Superficially Porous Particles-Packed Columns for Supercritical Fluid Chromatography. J. Chromatogr. A. 2020;1612:460687. doi: 10.1016/j.chroma.2019.460687. PubMed DOI
Scriba G.K.E. Chiral Recognition in Separation Sciences. Part II: Macrocyclic Glycopeptide, Donor-Acceptor, Ion-Exchange, Ligand-Exchange and Micellar Selectors. TrAC Trends Anal. Chem. 2019;119:115628. doi: 10.1016/j.trac.2019.115628. DOI
Khater S., West C. Characterization of Three Macrocyclic Glycopeptide Stationary Phases in Supercritical Fluid Chromatography. J. Chromatogr. A. 2019;1604:460485. doi: 10.1016/j.chroma.2019.460485. PubMed DOI
Zhang J.-H., Xie S.-M., Yuan L.-M. Recent Progress in the Development of Chiral Stationary Phases for High-Performance Liquid Chromatography. J. Sep. Sci. 2022;45:51–77. doi: 10.1002/jssc.202100593. PubMed DOI
Schmid M.G., Hägele J.S. Separation of Enantiomers and Positional Isomers of Novel Psychoactive Substances in Solid Samples by Chromatographic and Electrophoretic Techniques—A Selective Review. J. Chromatogr. A. 2020;1624:461256. doi: 10.1016/j.chroma.2020.461256. PubMed DOI
Ismail O.H., Felletti S., Luca C.D., Pasti L., Marchetti N., Costa V., Gasparrini F., Cavazzini A., Catani M. The Way to Ultrafast, High-Throughput Enantioseparations of Bioactive Compounds in Liquid and Supercritical Fluid Chromatography. Molecules. 2018;23:2709. doi: 10.3390/molecules23102709. PubMed DOI PMC
Roskam G., van de Velde B., Gargano A., Kohler I. Supercritical Fluid Chromatography for Chiral Analysis, Part 2: Applications. LCGC Eur. 2022;35:118–128. doi: 10.56530/lcgc.eu.fn8374q5. DOI
Kalíková K., Folprechtová D., Kadlecová Z. Sub/superkritická fluidní chromatografie pro analýzu chirálních sloučenin. Chem. Listy. 2022;116:146–151. doi: 10.54779/chl20220146. DOI
Losacco G.L., DaSilva J.O., Haidar Ahmad I.A., Mangion I., Berger T.A., Regalado E.L. Parallel Chiral Sub/Supercritical Fluid Chromatography Screening as a Framework for Accelerated Purification of Pharmaceutical Targets. J. Chromatogr. A. 2022;1674:463094. doi: 10.1016/j.chroma.2022.463094. PubMed DOI
Harps L.C., Joseph J.F., Parr M.K. SFC for Chiral Separations in Bioanalysis. J. Pharm. Biomed. Anal. 2019;162:47–59. doi: 10.1016/j.jpba.2018.08.061. PubMed DOI
West C. Recent Trends in Chiral Supercritical Fluid Chromatography. TrAC Trends Anal. Chem. 2019;120:115648. doi: 10.1016/j.trac.2019.115648. DOI
Roskam G., van de Velde B., Gargano A., Kohler I. Supercritical Fluid Chromatography for Chiral Analysis, Part 1: Theoretical Background. LCGC Eur. 2022;35:83–92. doi: 10.56530/lcgc.eu.ou1980m2. DOI
Kolderová N., Neveselý T., Šturala J., Kuchař M., Holakovský R., Kohout M. Enantioseparation of Chiral Sulfoxides on Amylose-Based Columns: Comparison of Normal Phase Liquid Chromatography and Supercritical Fluid Chromatography. Chromatographia. 2017;80:547–557. doi: 10.1007/s10337-016-3234-6. DOI
Roy D., Tarafder A., Miller L. Effect of Water Addition to Super/Sub-Critical Fluid Mobile-Phases for Achiral and Chiral Separations. TrAC Trends Anal. Chem. 2021;145:116464. doi: 10.1016/j.trac.2021.116464. DOI
Gazárková T., Plachká K., Svec F., Nováková L. Current State of Supercritical Fluid Chromatography-Mass Spectrometry. TrAC Trends Anal. Chem. 2022;149:116544. doi: 10.1016/j.trac.2022.116544. PubMed DOI
West C. Optimization in HPLC. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2021. Optimization Strategies in Packed- C Olumn Supercritical Fluid Chromatography (SFC) pp. 87–105.
Roy D., Tarafder A., Miller L. Additives in Chiral Packed Column Super/Subcritical Fluid Chromatography: A Little Goes a Long Way. J. Chromatogr. A. 2022;1676:463216. doi: 10.1016/j.chroma.2022.463216. PubMed DOI
Si-Hung L., Bamba T. Current State and Future Perspectives of Supercritical Fluid Chromatography. TrAC Trends Anal. Chem. 2022;149:116550. doi: 10.1016/j.trac.2022.116550. DOI
West C., Melin J., Ansouri H., Mengue Metogo M. Unravelling the Effects of Mobile Phase Additives in Supercritical Fluid Chromatography. Part I: Polarity and Acidity of the Mobile Phase. J. Chromatogr. A. 2017;1492:136–143. doi: 10.1016/j.chroma.2017.02.066. PubMed DOI
Roy D., Wahab M.F., Berger T.A., Armstrong D.W. Ramifications and Insights on the Role of Water in Chiral Sub/Supercritical Fluid Chromatography. Anal. Chem. 2019;91:14672–14680. doi: 10.1021/acs.analchem.9b03908. PubMed DOI
Khvalbota L., Roy D., Wahab M.F., Firooz S.K., Machyňáková A., Špánik I., Armstrong D.W. Enhancing Supercritical Fluid Chromatographic Efficiency: Predicting Effects of Small Aqueous Additives. Anal. Chim. Acta. 2020;1120:75–84. doi: 10.1016/j.aca.2020.04.065. PubMed DOI
Roy D., Farooq Wahab M., Talebi M., Armstrong D.W. Replacing Methanol with Azeotropic Ethanol as the Co-Solvent for Improved Chiral Separations with Supercritical Fluid Chromatography (SFC) Green Chem. 2020;22:1249–1257. doi: 10.1039/C9GC04207E. DOI
Folprechtová D., Kalíková K., Kadkhodaei K., Reiterer C., Armstrong D.W., Tesařová E., Schmid M.G. Enantioseparation Performance of Superficially Porous Particle Vancomycin-Based Chiral Stationary Phases in Supercritical Fluid Chromatography and High Performance Liquid Chromatography; Applicability for Psychoactive Substances. J. Chromatogr. A. 2021;1637:461846. doi: 10.1016/j.chroma.2020.461846. PubMed DOI
Roy D., Armstrong D.W. Fast Super/Subcritical Fluid Chromatographic Enantioseparations on Superficially Porous Particles Bonded with Broad Selectivity Chiral Selectors Relative to Fully Porous Particles. J. Chromatogr. A. 2019;1605:360339. doi: 10.1016/j.chroma.2019.06.060. PubMed DOI
Folprechtová D., Tesařová E., Kalíková K. The Effect of Tandem Coupling of NicoShell and TeicoShell Columns in Sub/Supercritical Fluid Chromatography on Enantioresolution. J. Sep. Sci. 2021;44:4048–4057. doi: 10.1002/jssc.202100501. PubMed DOI