The effect of tandem coupling of NicoShell and TeicoShell columns in sub/supercritical fluid chromatography on enantioresolution

. 2021 Nov ; 44 (21) : 4048-4057. [epub] 20210916

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34490981

Grantová podpora
20-19655S Grantová Agentura České Republiky

The coupling of columns in sub/supercritical fluid chromatography presents a great opportunity for influencing the separation efficiency and extending the selectivity of the separation system. Combinations of different types of chiral stationary phases could positively affect the enantioresolution if single ones are complementary to each other. In this work, two superficially porous particle (2.7 μm) macrocyclic glycopeptide-based columns, namely TeicoShell and NicoShell, were serially coupled and tested in sub/supercritical fluid chromatography for the first time. The influence of the column arrangement on the enantioseparation of structurally diverse biologically active compounds was examined. The obtained results showed how the column order crucially affected the enantioresolution of compounds tested, but the retention was negligibly affected in most cases. We also demonstrated that single TeicoShell and NicoShell columns are very promising towards the development of highly efficient and fast/ultrafast sub/supercritical fluid chromatography methods for structurally different chiral compounds. The optimized methods for sub-minute enantioselective separation of certain biologically important compounds were proposed.

Zobrazit více v PubMed

Folprechtová D, Kalíková K. Macrocyclic glycopeptide-based chiral selectors for enantioseparation in sub/supercritical fluid chromatography. Anal Sci Adv. 2021;2:15-32.

Gonçalves MS, Armstrong DW, Cabral LM, Pinto EC, de Sousa VP, Development and validation of a fast HPLC method for methyldopa enantiomers using superficially porous particle based macrocyclic glycopeptide stationary phase. Microchem J. 2021;164:105957.

Lomenova A, Hroboňová K, Application of achiral-chiral two-dimensional HPLC for separation of phenylalanine and tryptophan enantiomers in dietary supplement. Biomed Chromatogr. 2021;35:e4972.

Folprechtová D, Kozlov O, Armstrong DW, Schmid MG, Kalíková K, Tesařová E, Enantioselective potential of teicoplanin- and vancomycin-based superficially porous particles-packed columns for supercritical fluid chromatography. J Chromatogr A. 2020;1612:460687.

Fumagalli L, Pucciarini L, Regazzoni L, Gilardoni E, Carini M, Vistoli G, Aldini G, Sardella R. Direct HPLC separation of carnosine enantiomers with two chiral stationary phases based on penicillamine and teicoplanin derivatives. J Sep Sci. 2018;41:1240-6.

Ismail OH, Antonelli M, Ciogli A, De Martino M, Catani M, Villani C, Cavazzini A, Ye M, Bell DS, Gasparrini F. Direct analysis of chiral active pharmaceutical ingredients and their counterions by ultra high performance liquid chromatography with macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A. 2018;1576:42-50.

Cardoso PA, César IC. Chiral method development strategies for HPLC using macrocyclic glycopeptide-based stationary phases. Chromatographia. 2018;81:841-50.

Ciogli A, Ismail OH, Mazzoccanti G, Villani C, Gasparrini F. Enantioselective ultra high performance liquid and supercritical fluid chromatography: The race to the shortest chromatogram. J Sep Sci. 2018;41:1307-18.

Harvanová M, Gondová T. New enantioselective LC method development and validation for the assay of modafinil. J Pharm Biomed Anal. 2017;138:267-71.

Ali I, Suhail M, AL-Othman ZA, Alwarthan A, Aboul-Enein HY. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis. Biomed Chromatogr. 2016;30:683-94.

Lemasson E, Bertin S, West C. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification. J Sep Sci. 2016;39:212-33.

Ilisz I, Pataj Z, Aranyi A, Péter A. Macrocyclic antibiotic selectors in direct HPLC enantioseparations. Sep Purif Rev. 2012;41:207-49.

Schmid MG, Hölbling M, Schnedlitz N, Gübitz G. Enantioseparation of dipeptides and tripeptides by micro-HPLC comparing teicoplanin and teicoplanin aglycone as chiral selectors. J Biochem Biophys Methods. 2004;61:1-10.

Ilisz I, Grecsó N, Forró E, Fülöp F, Armstrong DW, Péter A. High-performance liquid chromatographic separation of paclitaxel intermediate phenylisoserine derivatives on macrocyclic glycopeptide and cyclofructan-based chiral stationary phases. J Pharm Biomed Anal. 2015;114:312-20.

Pataj Z, Ilisz I, Grecsó N, Palkó M, Fülöp F, Armstrong DW, Péter A. Enantiomeric separation of bicyclo[2.2.2]octane-based 2-amino-3-carboxylic acids on macrocyclic glycopeptide chiral stationary phases. Chirality. 2014;26:200-8.

Khater S, West C. Characterization of three macrocyclic glycopeptide stationary phases in supercritical fluid chromatography. J Chromatogr A. 2019;1604:460485.

West C. Recent trends in chiral supercritical fluid chromatography. TrAC Trends Anal Chem. 2019;120:115648.

Roy D, Armstrong DW. Fast super/subcritical fluid chromatographic enantioseparations on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous particles. J Chromatogr A. 2019;1605:360339.

Hellinghausen G, Roy D, Lee JT, Wang Y, Weatherly CA, Lopez DA, Nguyen KA, Armstrong JD, Armstrong DW. Effective methodologies for enantiomeric separations of 150 pharmacology and toxicology related 1°, 2°, and 3° amines with core-shell chiral stationary phases. J Pharm Biomed Anal. 2018;155:70-81.

Folprechtová D, Kalíková K, Kadkhodaei K, Reiterer C, Armstrong DW, Tesařová E, Schmid MG. Enantioseparation performance of superficially porous particle vancomycin-based chiral stationary phases in supercritical fluid chromatography and high performance liquid chromatography; applicability for psychoactive substances. J Chromatogr A. 2021;1637:461846.

Vaňkátová P, Folprechtová D, Kalíková K, Kubíčková A, Armstrong DW, Tesařová E. Enantiorecognition ability of different chiral selectors for separation of liquid crystals in supercritical fluid chromatography; critical evaluation. J Chromatogr A. 2020;1622:461138.

Roy D, Wahab MF, Berger TA, Armstrong DW. Ramifications and insights on the role of water in chiral sub/supercritical fluid chromatography. Anal Chem. 2019;91:14672-80.

Roy D, Wahab MF, Talebi M, Armstrong DW. Replacing methanol with azeotropic ethanol as the co-solvent for improved chiral separations with supercritical fluid chromatography (SFC). Green Chem. 2020;22:1249-57.

Alvarez-Segura T, Torres-Lapasió JR, Ortiz-Bolsico C, García-Alvarez-Coque MC. Stationary phase modulation in liquid chromatography through the serial coupling of columns: A review. Anal Chim Acta. 2016;923:1-23.

Wang C, Tymiak AA, Zhang Y. In: Poole CF (Ed.), Supercritical Fluid Chromatography. Elsevier 2017, pp. 153-72.

Eeltink S, Decrop WMC, Steiner F, Ursem M, Cabooter D, Desmet G, Kok WT. Use of kinetic plots for the optimization of the separation time in ultra-high-pressure LC. J Sep Sci. 2010;33:2629-35.

West C, Lemasson E, Bertin S, Hennig P, Lesellier E. Interest of achiral-achiral tandem columns for impurity profiling of synthetic drugs with supercritical fluid chromatography. J Chromatogr A. 2018;1534:161-9.

Delahaye S, Lynen F. Implementing stationary-phase optimized selectivity in supercritical fluid chromatography. Anal Chem. 2014;86:12220-8.

Sardella R, Lämmerhofer M, Natalini B, Lindner W. In-line coupling of a reversed-phase column to cope with limited chemoselectivity of a quinine carbamate-based anion-exchange type chiral stationary phase. J Sep Sci. 2008;31:1702-11.

Welch CJ, Biba M, Gouker JR, Kath G, Augustine P, Hosek P. Solving multicomponent chiral separation challenges using a new SFC tandem column screening tool. Chirality. 2007;19:184-89.

Phinney KW, Sander LC, Wise SA. Coupled achiral/chiral column techniques in subcritical fluid chromatography for the separation of chiral and nonchiral compounds. Anal Chem. 1998;70:2331-5.

Wang C, Tymiak AA, Zhang Y. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter. Anal Chem. 2014;86:4033-40.

Poole CF. Stationary phases for packed-column supercritical fluid chromatography. J Chromatogr A. 2012;1250:157-71.

Akchich A, Charton J, Lipka E. Application of tandem coupling of columns in supercritical fluid chromatography for stereoisomeric separation: Optimization and simulation. J Chromatogr A. 2019;1588:115-26.

Kučerová G, Vozka J, Kalíková K, Geryk R, Plecitá D, Pajpanova T, Tesařová E. Enantioselective separation of unusual amino acids by high performance liquid chromatography. Sep Purif Technol. 2013;119:123-28.

Beesley TE, Lee J-T. Method development strategy and applications update for CHIROBIOTIC chiral stationary phases. J Liq Chromatogr Relat Technol. 2009;32:1733-67.

Gordillo R. Supercritical fluid chromatography hyphenated to mass spectrometry for metabolomics applications. J Sep Sci. 2021;44:448-63.

Liu Q, Dong F, Xu J, Liu X, Wu X, Li R, Jiang D, Wu X, Liu Y, Zheng Y. Enantioseparation and dissipation monitoring of oxathiapiprolin in grape using supercritical fluid chromatography tandem mass spectrometry. J Sep Sci. 2020;43:4077-87.

Kaplitz AS, Mostafa ME, Calvez SA, Edwards JL, Grinias JP. Two-dimensional separation techniques using supercritical fluid chromatography. J Sep Sci. 2021;44:426-37.

Kot A, Sandra P, Venema A. Sub- and supercritical fluid chromatography on packed columns: a versatile tool for the enantioselective separation of basic and acidic drugs. J Chromatogr Sci. 1994;32:439-48.

Barnhart WW, Gahm KH, Thomas S, Notari S, Semin D, Cheetham J. Supercritical fluid chromatography tandem-column method development in pharmaceutical sciences for a mixture of four stereoisomers. J Sep Sci. 2005;28:619-26.

La Z, Charton J, Etienne L, Bourey J, Lipka E. Supercritical fluid chromatography and liquid chromatography for isomeric separation of a multiple chiral centers analyte. J Chromatogr A. 2021;1651:462270.

Hegade RS, Lynen F. Chiral stationary phase optimized selectivity supercritical fluid chromatography: A strategy for the separation of mixtures of chiral isomers. J Chromatogr A. 2019;1586:116-27.

Cavazzini A, Nadalini G, Dondi F, Gasparrini F, Ciogli A, Villani C. Study of mechanisms of chiral discrimination of amino acids and their derivatives on a teicoplanin-based chiral stationary phase. J Chromatogr A. 2004;1031:143-58.

Kalíková K, Lokajová J, Tesařová E. Linear free energy relationship as a tool for characterization of three teicoplanin-based chiral stationary phases under various mobile phase compositions. J Sep Sci. 2006;29:1476-85.

Ilisz I, Aranyi A, Pataj Z, Péter A. Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: A review. J Pharm Biomed Anal. 2012;69:28-41.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...