Supercritical fluid chromatography in chiral separations: Evaluation of equivalency of polysaccharide stationary phases
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GAUK No. 1574517
Grantová Agentura, Univerzita Karlova
SVV No. 260412/2018
Univerzita Karlova v Praze
STARSS project (Reg. No. CZ.02.1.01/0.0/0.0/15_003
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32233109
DOI
10.1002/jssc.202000085
Knihovny.cz E-zdroje
- Klíčová slova
- chiral screening, column evaluation, enantioseparation, polysaccharide stationary phases, supercritical fluid chromatography,
- Publikační typ
- časopisecké články MeSH
Nine different chiral columns based on covalently immobilized or coated tris(3,5-dimethylphenylcarbamate) cellulose and amylose have been explored. We evaluated their respective enantioselective potential including the enantioseparation and qualitative characteristics of peaks. The generic screening conditions were using gradient elution from 5 to 40% organic modifier/CO2 during 3 min with about 40 enantiomer pairs. Primary screening was carried out using ten different mobile phases varying in type of additives while using one representative amylose- and one cellulose-based column. The complete evaluation of all nine columns was then carried out using three best performing organic modifiers: (1) methanol + 0.1% trifluoroacetic acid + 0.1% diethylamine, (2) isopropanol + 0.1% trifluoroacetic acid + 0.1% diethylamine, and (3) methanol + 0.1% ammonium hydroxide. Equivalency of different columns with the same chiral selector was not confirmed. Columns with the same stationary phase but different supports or manufacturing methods displayed differences in enantioselectivity and general performance. The similarity corresponded to 62 and 63% for the three cellulose-coated columns taking CEL1 as the reference. The similarity was 67% for the pair of amylose-based coated columns. For immobilized columns, the similarity was 69 and 59% for celluloses and amyloses pairs, respectively. The best performing column based on success rate of enantioseparation was Chiralcel OD-3 when using methanol + 0.1% trifluoroacetic acid and 0.1% diethylamine combined additive.
Zobrazit více v PubMed
Nováková, L., Plachká, K., Jakubec, P., Ultra-High Performance Supercritical Fluid Chromatography-Mass Spectrometry in Handbook of Advanced Chromatography/Mass Spectrometry Techniques. AOCS Press, 2017, pp. 445-487. Illionis, USA.
Desfontaine, V., Guillarme, D., Francotte, E., Nováková, L., Supercritical fluid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 2015, 113, 56-71.
Nováková, L., Grand-Guillaume Perrenoud, A., Francois, I., West, C., Lesellier, E., Guillarme, D., Modern analytical supercritical fluid chromatography using columns packed with sub-2μm particles: A tutorial. Anal. Chim. Acta 2014, 824, 18-35.
Grand-Guillaume Perrenoud, A., Veuthey, J. L., Guillarme, D., The use of columns packed with sub-2 μm particles in supercritical fluid chromatography. TrAC - Trends Anal. Chem. 2014, 63, 44-54.
U.S. Department of Health and Human 5. 5. Services, Food and Drug Administration, Guidance for industry, Bioanalytical method validation. U.S. Department of Health and Human Services Food and Drug Administration, 2001. Maryland, United States.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q3A(R2): Impuritiesinnewdrugsubstances. EMEA, 2006. London, Great Britain.
Brooks, W. H., Guida, W. C., Daniel, K. G., The significance of chirality in drug design and development. Curr. Topics Med. Chem. 2011, 11, 760-770.
Gellad, W. F., Choi, P., Mizah, M., Good, B. Ch., Kesselheim, A. S., Assessing the chiral switch: Approval and use of single-enantiomer drugs, 2001 to 2011. Am. J. Manag. Care 2014, 20(3):e90-e97.
Calcaterra, A., D'Acquarica, I., The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. JPBA 2018, 147, 323-340.
Aichner, D., Ganzera, M., Analysis of anthraquinones in rhubarb (Rheum palmatum and Rheum officinale) by supercritical fluid chromatography. Talanta 2015, 144, 1239-1244.
Marley, A., Connolly, D., Determination of (R)-timolol in (S)-timolol maleate active pharmaceutical ingredient: Validation of a new supercritical fluid chromatography method with an established normal phase liquid chromatography method. J. Chromatogr. A 2014, 1325, 213-220.
Venkata Narasimha Rao, G., Gnanadev, G., Ravi, B., Dhananjaya, D., Manoj, P., Indu, B., Nadh, R. V., Supercritical fluid (carbon dioxide) based ultra performance convergence chromatography for the separation and determination of fulvestrant diastereomers. Anal. Methods 2013, 5, 4832-4837.
Andri, B., Lebrun, P., Dispas, A., Klinkenberg, R., Streel, B., Ziemons, E., Marini, R. D., Hubert, P., Optimization and validation of a fast supercritical fluid chromatography method for the quantitative determination of vitamin D3 and its related impurities. J. Chromatogr. A. 2017, 1491, 171-181.
United States Pharmacopeial Convention Inc. 2018 U.S. Pharmacopoeia-National Formulary [USP 41 NF 36]. Volume 1, United States Pharmacopeial Convention Inc., Rockville MD, 2018.
Plachká, K., Chrenková, L., Douša, M., Nováková, L., Development, validation and comparison of UHPSFC and UHPLC methods for the determination of agomelatine and its impurities. J. Pharm. Biomed. Anal. 2016, 125, 376-384.
Dispas, A., Desfontaine, V., Andri, B., Lebrun, P., Kotoni, D., Clarke, A., Guillarme, D., Hubert, P., Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography. J. Pharm. Biomed. Anal. 2017, 134, 170-180.
Dispas, A., Lebrun, P., Ziemons, E., Marini, R., Rozet, E., Hubert, P., Evaluation of the quantitative performances of supercritical fluid chromatography: From method development to validation. J. Chromatogr. A 2014, 1353, 78-88.
Pilařová, V., Gottvald, T., Svoboda, P., Novák, O., Benešová, K., Běláková, S., Nováková, L., Development and optimization of ultra-high performance supercritical fluid chromatography mass spectrometry method for high-throughput determination of tocopherols and tocotrienols in human serum. Anal. Chim. Acta 2016, 934, 252-265.
Huang, Y., Analytical SFC for Impurities in Supercritical Fluid Chromatography: Advances and Applications in Pharmaceutical Analysis, CRC Press, Boca Raton, FL 2014.
Yang, Z., Xu, X., Sun, L., Zhao, X., Wang, H., Fawcett, JP., Yang, Y., Gu, J., Development and validation of an enantioselective SFC-MS/MS method for simultaneous separation and quantification of oxcarbazepine and its chiral metabolites in beagle dog plasma. J. Chromatogr. B 2016, 1020, 36-42.
Council of Europe. European Pharmacopoeia, 10th edition. Strasbourg: Council of Europe, Strasbourg, 2018.
Snyder, L. R., Dolan, J. W., Carr, P. W., The hydrophobic-subtraction model of reversed-phase column selectivity. J. Chromatogr. A 2004, 1060, 77-116.
Galea, C., Mangelings, D., Vander Heyden, Y., Characterization and classification of stationary phases in HPLC and SFC-A review. Anal. Chim. Acta 2015, 886, 1-15.
West, C., Khalikova, M. A., Lesellier, E., Héberger, K., Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography. J. Chromatogr. A 2015, 1409, 241-250.
Dispas, A., Lebrun, P., Sacré, P. Y., Hubert, P., Screening study of SFC critical method parameters for the determination of pharmaceutical compounds. J. Pharm. Biomed. Anal. 2016, 125, 339-354.
Khater, S., Zhang, Y., West, C., In-depth characterization of six cellulose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases in supercritical fluid chromatography. J. Chromatogr. A 2013, 1303, 83-93.
Zhang, T., Kientzy, C., Franco, P., Ohnishi, A., Kagamiharb, Y., Kurosawa, H., Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J. Chromatogr. A 2005, 1075, 65-75.
Zhang, T., Nguyen, D., Franco, P., Murakami, T., Ohnishi, A., Kurosawa, H., Cellulose 3,5-dimethylphenylcarbamate immobilize on silica A new chiral stationry phase for the analysis of enantiomers. Anal. Chim. Acta 2006, 557, 221-228.
Kalíková, K., Geryk, R., Vozka, J., Tesařová, E., Evaluation of differences between Chiralpak IA and Chiralpak AD-RH amylose-based chiral stationary phases in reversed-phase high-performance liquid chromatography. J. Sep. Sci. 2015, 38, 711-719.
Kalíková, K., Martínková, M., Schmid, G. M., Tesařová, E., Cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase for the enantioseparation of drugs in supercritical fluid chromatography: Comparison with HPLC. J. Sep. Sci. 2018, 41, 1471-1478.
West, C., Guenegou, G., Zhang, Y., Morin-Allory, L., Insights into chiral recognition mechanisms in supercritical fluid chromatography. II. Factors contributing to enantiomer separation on tris-(3,5-dimethylphenylcarbamate) of amylose and cellulose stationary phases. J. Chromatogr. A 2011, 1218, 2033-2057.
De Klerck, K., Parewyck, G., Mangelings, D., Vander Heyden, Y., Enantioselectivity of polysaccharide-based chiral stationary phases in supercritical fluid chromatography using methanol-containing carbon dioxide mobile phases. J. Chromatogr. A 2012, 1269, 336-345.
De Klerck, K., Vander Heyden, Y., Mangelings, D., Exploratory data analysis as a tool for similarity assesment and clustering of chiral polysaccharide-based systems used to separate pharmaceuticals in supercritical fluid chromatography. J. Chromatogr. A 2014, 1236, 110-124.
Hamman, C., Wong, M., Hayes, M., Gibbons, P., A high throughput approach to purifying chiral molecules using 3 μm analytical chiral stationary phases via supercritical fluid chromatography. J. Chromatogr. A 2011, 1218, 3529-3536.
Hamman, C., Wong, M., Aliagas, I., Ortwine, D. F., Pease, J., Schmidt, D. E. Jr., Victorino, J., The evaluation of 25 chiral stationary phases and the utilization of sub-2.0 μm coated polysaccharide chiral stationary phases via supercritical fluid chromatography. J. Chromatogr. A 2013, 1305, 310-319.
Maftouh, M., Granier-Loyaux, C., Chavana, E., Marini, J., Pradines, A., Heyden, Y. V., Picard, C., Screening approach for chiral separation of pharmaceutical Part III. Supercritical fluid chromatography for analysis and purification in drug discovery. J. Chromatogr. A 2005, 1088, 67-81.
Nelander, H., Andersson, S., Öhlén, K., Evaluation of the chiral recognition properties as well as the column performance of four chiral stationary phases based on cellulose (3,5-dimethylphenylcarbamate) by parallel HPLC and SFC. J. Chromatogr. A 2011, 1218, 9397-9405.
Pirzada, Z., Personick, Z., Biba, M., Gong, M., Zhou, L., Schafer, W., Roussel, C., Welch, C. J., Systematic evaluation of new chiral stationary phases for supercritical fluid chromatography using a standard racemate library. J. Chromatogr. A 2010, 1217, 1134-1138.
Khater, S., Zhang, Y., West, C., Insights into chiral recognition mechanism in supercritical fluid chromatography III. Non-halogenated polysaccharide stationary phases. J. Chromatogr. A 2014, 1363, 278-293.
Tarafder, A., Metamorphosis of supercritical fluid chromatography to SFC: An overview. TrAC - Trends Anal. Chem. 2016, 81, 3-10.
Nováková, L., Douša, M., General screening and optimization strategy for fast chiral separations in modern supercritical fluid chromatography. Anal. Chim. Acta 2017, 950, 199-210.
Da Silva, C. G. A., Collins, C. H., Super/subcritical fluid chromatography with packed columns: State of the art and applications. Quim. Nova. 2014, 37, 1047-1057.
De Klerck, K., Mangelings, D., Clicq, D., De Boever, F., Vander Heyden, Y., Combined use of isopropylamine an trifluoroacetic acid in methanol-containing mobile phases for chiral supercritical flui chromatography. J. Chromatogr. A 2012, 1234, 336-345.
De Klerck, K., Tistaert, Ch., Mangelings, D., Vander Heyden, Y., Updating a generic screening approach in sub-or supercritical fluid chromatography for the enantioresolution of pharmaceuticals. J. Supercrit. Fluids 2013, 80, 50-59.
Michaels, P., Neef, J., Galyan, K., Ginsburg-Mraff, C., Zhou, X., Dunstan, D., Poirier, J., Reilly, J., Enabling chiral separations in discovery chemistry with open-access chiral supercritical fluid chromatography. Chirality 2019, 31, 575-582.
Geryk, R., Kalikova, K., Schmid, G. M., Tesarova, E., Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography. Anal. Chim. Acta 2016, 932, 98-105.
Kucerova, G., Kalikova, K., Tesarova, E., Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography. Chirality 29, 239-246.
Hegade, R. S., Lynen, F., Chiral stationary phase optimized selectivity supercritical fluid chromatography: A strategy for the separation of mixtures of chiral isomers. J. Chromatogr. A. 2019, 1586, 116-127.
West, C., Recent trends in chiral supercritical fluid chromatography. TrAC - Trends Anal. Chem. 2019, 120, 115648.
Feletti, S., Ismail Omar, H., De Luca, Ch., Costa, V., Gasparinni, F., Pasti, L., Recent achievements and future challenges in supercritical fluid chromatography for the enantioselective separation of chiral pharmaceuticals. Chromatographia 2019, 82, 65-75.
Francotte, E., Zhang, T., Supramolecular effects in the chiral discrimination of meta-methylbenzoyl cellulose in high-performance liquid chromatography. J. Chromatogr. A 1995, 718, 257-266.
Fairchild Jacob, N., Iraneta Pamela, C., Hill, J. F., Influence of sample solvent composition for SFC separations. LCGC North Am. 2013, 4, 326-333.
Kaufman, L., & Roussew, P. J., Finding Groups in Data-An Introduction to Cluster Analysis. John Wiley & Sons, Hoboken, NJ 1990.
Tang, Y., Significance of mobile phase composition in enantioseparation of chiral drugs by HPLC on a cellulose-based chiral stationary phase. Chirality 1996, 8, 136-142.
Chankvetadze, L., Ghibradze, N., Karchkhadze, M., Peng, L., Farkas, T., Chankvetadze, B., Enantiomer elution order reversal of fluorenylmethoxycarbonyl-isoleucine in high-performance liquid chromatography by changing the mobile phase temperature and composition. J. Chromatogr. A 2011, 1218, 6554-6560.
West, C., Enantioselective separation with supercritical fluids. Curr. Anal. Chem. 2014, 10, 99-120.
Vankatova, P., Kalikova, K., Kubickova, A., Ultra-performance supercritical fluid chromatography: A powerful tool for the enantioseparation of thermotropic fluorinated liquid crystals. J. Supercrit. Fluids 2019, 146, 217-225
Akchich, A., Charton, J., Lipka, E., Application of tandem coupling of columns in supercritical fluidchromatography for stereoisomeric separation: Optimization and simulation. J. Chromatogr. A 2019, 1588, 115-216.