A stargate mechanism of Microviridae genome delivery unveiled by cryogenic electron tomography
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
Wellcome Trust - United Kingdom
P20 GM152333
NIGMS NIH HHS - United States
U24 GM129541
NIGMS NIH HHS - United States
PubMed
38915634
PubMed Central
PMC11195240
DOI
10.1101/2024.06.11.598214
PII: 2024.06.11.598214
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Single-stranded DNA bacteriophages of the Microviridae family are major components of the global virosphere. Microviruses are highly abundant in aquatic ecosystems and are prominent members of the mammalian gut microbiome, where their diversity has been linked to various chronic health disorders. Despite the clear importance of microviruses, little is known about the molecular mechanism of host infection. Here, we have characterized an exceptionally large microvirus, Ebor, and provide crucial insights into long-standing mechanistic questions. Cryogenic electron microscopy of Ebor revealed a capsid with trimeric protrusions that recognise lipopolysaccharides on the host surface. Cryogenic electron tomography of the host cell colonized with virus particles demonstrated that the virus initially attaches to the cell via five such protrusions, located at the corners of a single pentamer. This interaction triggers a stargate mechanism of capsid opening along the 5-fold symmetry axis, enabling delivery of the virus genome. Despite variations in specific virus-host interactions among different Microviridae family viruses, structural data indicate that the stargate mechanism of infection is universally employed by all members of the family. Startlingly, our data reveal a mechanistic link for the opening of relatively small capsids made out of a single jelly-roll fold with the structurally unrelated giant viruses.
Department of Biology University of York Wentworth Way York YO10 5DD UK
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Department of Microbiology and Immunology University of British Columbia Vancouver V6T 1Z3 BC Canada
Department of Microbiology and Molecular Genetics Oklahoma State University US
York Biomedical Research Institute University of York York United Kingdom YO10 5NG
Zobrazit více v PubMed
Taylor NMI, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM, Browning C, Goldie KN, et al. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature. 2016. May;533(7603):346–52. PubMed
Sun Y, Roznowski AP, Tokuda JM, Klose T, Mauney A, Pollack L, et al. Structural changes of tailless bacteriophage ΦX174 during penetration of bacterial cell walls. Proc Natl Acad Sci. 2017. Dec 26;114(52):13708–13. PubMed PMC
Bárdy P, MacDonald CIW, Pantůček R, Antson AA, Fogg PCM. Jorvik: A membrane-containing phage that will likely found a new family within Vinavirales. iScience. 2023. Nov 17;26(11):108104. PubMed PMC
Kirchberger PC, Martinez ZA, Ochman H. Organizing the Global Diversity of Microviruses. mBio. 2022. Jun 28;13(3):e0058822. PubMed PMC
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell. 2022. Oct 13;185(21):4023–4037.e18. PubMed
Brum JR, Schenck RO, Sullivan MB. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 2013. Sep;7(9):1738–51. PubMed PMC
Tisza MJ, Pastrana DV, Welch NL, Stewart B, Peretti A, Starrett GJ, et al. Discovery of several thousand highly diverse circular DNA viruses. Kirkegaard K, Pride D, editors. eLife. 2020. Feb 4;9:e51971. PubMed PMC
Yoshida M, Mochizuki T, Urayama SI, Yoshida-Takashima Y, Nishi S, Hirai M, et al. Quantitative Viral Community DNA Analysis Reveals the Dominance of Single-Stranded DNA Viruses in Offshore Upper Bathyal Sediment from Tohoku, Japan. Front Microbiol [Internet]. 2018. [cited 2024 Feb 19];9. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2018.00075 PubMed DOI PMC
Zuo T, Sun Y, Wan Y, Yeoh YK, Zhang F, Cheung CP, et al. Human-Gut-DNA Virome Variations across Geography, Ethnicity, and Urbanization. Cell Host Microbe. 2020. Nov 11;28(5):741–751.e4. PubMed
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, et al. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe. 2022. Mar;30(3):340–356.e8. PubMed
Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell. 2015. Jan 29;160(3):447–60. PubMed PMC
Olo Ndela E, Roux S, Henke C, Sczyrba A, Sime Ngando T, Varsani A, et al. Reekeekee- and roodoodooviruses, two different Microviridae clades constituted by the smallest DNA phages. Virus Evol. 2023. Jan 1;9(1):veac123. PubMed PMC
Zhang L, Li Z, Bao M, Li T, Fang F, Zheng Y, et al. A Novel Microviridae Phage (CLasMV1) From “Candidatus Liberibacter asiaticus”. Front Microbiol [Internet]. 2021. [cited 2024 Jan 4];12. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2021.754245 PubMed DOI PMC
Kirchberger PC, Ochman H. Microviruses: A World Beyond phiX174. Annu Rev Virol. 2023. Sep 29;10(1):99–118. PubMed
Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, et al. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch Virol. 2021. Sep 1;166(9):2633–48. PubMed
Chipman PR, Agbandje-McKenna M, Renaudin J, Baker TS, McKenna R. Structural analysis of the spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the Microviridae. Struct Lond Engl 1993. 1998. Feb 15;6(2):135–45. PubMed PMC
Kirchberger PC, Ochman H. Resurrection of a global, metagenomically defined gokushovirus. Zambrano MM, Kirkegaard K, Breitbart M, editors. eLife. 2020. Feb 26;9:e51599. PubMed PMC
Lee H, Baxter AJ, Bator CM, Fane BA, Hafenstein SL. Cryo-EM Structure of Gokushovirus ΦEC6098 Reveals a Novel Capsid Architecture for a Single-Scaffolding Protein, Microvirus Assembly System. J Virol. 96(21):e00990–22. PubMed PMC
Sun L, Young LN, Zhang X, Boudko SP, Fokine A, Zbornik E, et al. Icosahedral bacteriophage ΦX174 forms a tail for DNA transport during infection. Nature. 2014. Jan 16;505(7483):432–5. PubMed
Zucker F, Bischoff V, Olo Ndela E, Heyerhoff B, Poehlein A, Freese HM, et al. New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial Alphaproteobacteria. Virus Evol. 2022. Jul 1;8(2):veac070. PubMed PMC
Schrad JR, Abrahão JS, Cortines JR, Parent KN. Structural and Proteomic Characterization of the Initiation of Giant Virus Infection. Cell. 2020. May 28;181(5):1046–1061.e6. PubMed PMC
Zauberman N, Mutsafi Y, Halevy DB, Shimoni E, Klein E, Xiao C, et al. Distinct DNA Exit and Packaging Portals in the Virus Acanthamoeba polyphaga mimivirus. PLoS Biol. 2008. May;6(5):e114. PubMed PMC
Bárdy P, Füzik T, Hrebík D, Pantůček R, Thomas Beatty J, Plevka P. Structure and mechanism of DNA delivery of a gene transfer agent. Nat Commun. 2020. Jun 15;11(1):3034. PubMed PMC
Strnad H, Lapidus A, Paces J, Ulbrich P, Vlcek C, Paces V, et al. Complete Genome Sequence of the Photosynthetic Purple Nonsulfur Bacterium Rhodobacter capsulatus SB 1003. J Bacteriol. 2010. Jul;192(13):3545–6. PubMed PMC
Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol. 2013. Jan;21(1):23–30. PubMed
Ding H, Moksa MM, Hirst M, Beatty JT. Draft Genome Sequences of Six Rhodobacter capsulatus Strains, YW1, YW2, B6, Y262, R121, and DE442. Genome Announc. 2014. Feb 13;2(1):e00050–14. PubMed PMC
Solioz M, Marrs B. The gene transfer agent of Rhodopseudomonas capsulata,. Arch Biochem Biophys. 1977. May 1;181(1):300–7. PubMed
Yen HC, Hu NT, Marrs BL. Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonas capsulata. J Mol Biol. 1979. Jun 25;131(2):157–68. PubMed
Roux S, Krupovic M, Poulet A, Debroas D, Enault F. Evolution and Diversity of the Microviridae Viral Family through a Collection of 81 New Complete Genomes Assembled from Virome Reads. PLOS ONE. 2012. Jul 11;7(7):e40418. PubMed PMC
Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Söding J, et al. Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. Curr Protoc Bioinforma. 2020;72(1):e108. PubMed
McKenna R, Xia D, Willingmann P, Ilag LL, Krishnaswamy S, Rossmann MG, et al. Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications. Nature. 1992. Jan 1;355(6356):137–43. PubMed PMC
Ilag LL, McKenna R, Yadav MP, BeMiller JN, Incardona NL, Rossmann MG. Calcium Ion-induced Structural Changes in Bacteriophage φ X174. J Mol Biol. 1994. Dec 1;244(3):291–300. PubMed
Leung MM, Brimacombe CA, Spiegelman GB, Beatty JT. The GtaR protein negatively regulates transcription of the gtaRI operon and modulates gene transfer agent (RcGTA) expression in Rhodobacter capsulatus. Mol Microbiol. 2012. Feb;83(4):759–74. PubMed PMC
Adams PG, Lamoureux L, Swingle KL, Mukundan H, Montaño GA. Lipopolysaccharide-Induced Dynamic Lipid Membrane Reorganization: Tubules, Perforations, and Stacks. Biophys J. 2014. Jun 3;106(11):2395–407. PubMed PMC
Stacey JCV, Tan A, Lu JM, James LC, Dick RA, Briggs JAG. Two structural switches in HIV-1 capsid regulate capsid curvature and host factor binding. Proc Natl Acad Sci. 2023. Apr 18;120(16):e2220557120. PubMed PMC
Nielsen TK, Forero-Junco LM, Kot W, Moineau S, Hansen LH, Riber L. Detection of nucleotide modifications in bacteria and bacteriophages: Strengths and limitations of current technologies and software. Mol Ecol. 2023;32(6):1236–47. PubMed
Bernal RA, Hafenstein S, Esmeralda R, Fane BA, Rossmann MG. The phiX174 protein J mediates DNA packaging and viral attachment to host cells. J Mol Biol. 2004. Apr 9;337(5):1109–22. PubMed
Nasir A, Caetano-Anollés G. Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification. Front Microbiol. 2017. Mar 10;8:380. PubMed PMC
Buchta D, Füzik T, Hrebík D, Levdansky Y, Sukeník L, Mukhamedova L, et al. Enterovirus particles expel capsid pentamers to enable genome release. Nat Commun. 2019. Mar 8;10(1):1138. PubMed PMC
Ormerod JG, Ormerod KS, Gest H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961. Sep 1;94(3):449–63. PubMed
Wall JD, Weaver PF, Gest H. Gene transfer agents, bacteriophages, and bacteriocins of Rhodopseudomonas capsulata. Arch Microbiol. 1975. Nov 7;105(3):217–24. PubMed
Beatty JT, Gest H. Generation of succinyl-coenzyme A in photosynthetic bacteria. Arch Microbiol. 1981. Jul 1;129(5):335–40.
Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. Assembly of long error-prone reads using de Bruijn graphs. Proc Natl Acad Sci. 2016. Dec 27;113(52):E8396–405. PubMed PMC
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinforma Oxf Engl. 2014. Jul 15;30(14):2068–9. PubMed
Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001. Jun 15;29(12):2607–18. PubMed PMC
Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012. Feb 15;28(4):464–9. PubMed PMC
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997. Sep 1;25(17):3389–402. PubMed PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021. Aug;596(7873):583–9. PubMed PMC
Underwood AP, Green J. MOP-UP: an online tool for finding strain-specific primers or motifs in DNA or protein alignments. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2004. Oct;10(10):948–50. PubMed
Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27(1):135–45. PubMed PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinforma Oxf Engl. 2014. May 1;30(9):1312–3. PubMed PMC
Lemoine F, Domelevo Entfellner JB, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018. Apr;556(7702):452–6. PubMed PMC
Fogg MJ, Wilkinson AJ. Higher-throughput approaches to crystallization and crystal structure determination. Biochem Soc Trans. 2008. Jul 22;36(4):771–5. PubMed
Benešík M, Nováček J, Janda L, Dopitová R, Pernisová M, Melková K, et al. Role of SH3b binding domain in a natural deletion mutant of Kayvirus endolysin LysF1 with a broad range of lytic activity. Virus Genes. 2018. Feb;54(1):130–9. PubMed
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods. 2017. Apr;14(4):331–2. PubMed PMC
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Egelman EH, Kuriyan J, editors. eLife. 2018. Nov 9;7:e42166. PubMed PMC
Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 1996;116(1):71–6. PubMed
Rohou A, Grigorieff N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2015. Nov;192(2):216–21. PubMed PMC
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci Publ Protein Soc. 2021. Jan;30(1):70–82. PubMed PMC
Sanchez-Garcia R, Gomez-Blanco J, Cuervo A, Carazo JM, Sorzano COS, Vargas J. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol. 2021. Jul 15;4(1):1–8. PubMed PMC
Zivanov J, Nakane T, Scheres SHW. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ. 2019. Jan 1;6(Pt 1):5–17. PubMed PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010. Apr;66(Pt 4):486–501. PubMed PMC
Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr Sect Struct Biol. 2019. Oct 1;75(Pt 10):861–77. PubMed PMC
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010. Jan 1;66(Pt 1):12–21. PubMed PMC
Chen M, Bell JM, Shi X, Sun SY, Wang Z, Ludtke SJ. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat Methods. 2019. Nov;16(11):1161–8. PubMed PMC
Bepler T, Morin A, Rapp M, Brasch J, Shapiro L, Noble AJ, et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods. 2019. Nov;16(11):1153–60. PubMed PMC
Schwab J, Kimanius D, Burt A, Dendooven T, Scheres SHW. DynaMight: estimating molecular motions with improved reconstruction from cryo-EM images [Internet]. bioRxiv; 2023. [cited 2024 Apr 22]. p. 2023.10.18.562877. Available from: https://www.biorxiv.org/content/10.1101/2023.10.18.562877v1 PubMed DOI PMC
Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci Publ Protein Soc. 2018. Jan;27(1):112–28. PubMed PMC
Chen M, Dai W, Sun SY, Jonasch D, He CY, Schmid MF, et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat Methods. 2017. Oct;14(10):983–5. PubMed PMC
Carnoy C, Roten CA. The dif/Xer Recombination Systems in Proteobacteria. PLoS ONE. 2009. Sep 3;4(9):e6531. PubMed PMC