Jorvik: A membrane-containing phage that will likely found a new family within Vinavirales
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
37867962
PubMed Central
PMC10589892
DOI
10.1016/j.isci.2023.108104
PII: S2589-0042(23)02181-8
Knihovny.cz E-zdroje
- Klíčová slova
- Ecology, Microbiology, Virology,
- Publikační typ
- časopisecké články MeSH
Although membrane-containing dsDNA bacterial viruses are some of the most prevalent predators in aquatic environments, we know little about how they function due to their intractability in the laboratory. Here, we have identified and thoroughly characterized a new type of membrane-containing bacteriophage, Jorvik, that infects the freshwater mixotrophic model bacterium Rhodobacter capsulatus. Jorvik is extremely virulent, can persist in the host integrated into the RuBisCo operon and encodes two experimentally verified cell wall hydrolases. Jorvik-like prophages are abundant in the genomes of Alphaproteobacteria, are distantly related to known viruses of the class Tectiliviricetes, and we propose they should be classified as a new family. Crucially, we demonstrate how widely used phage manipulation methods should be adjusted to prevent loss of virus infectivity. Our thorough characterization of environmental phage Jorvik provides important experimental insights about phage diversity and interactions in microbial communities that are often unexplored in common metagenomic analyses.
Biology Department University of York Wentworth Way York YO10 5DD UK
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
York Biomedical Research Institute University of York Wentworth Way York YO10 5NG UK
Zobrazit více v PubMed
Mäntynen S., Sundberg L.-R., Oksanen H.M., Poranen M.M. Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology. Viruses. 2019;11:76. doi: 10.3390/v11010076. PubMed DOI PMC
Krishnamurthy S.R., Janowski A.B., Zhao G., Barouch D., Wang D. Hyperexpansion of RNA Bacteriophage Diversity. PLoS Biol. 2016;14:e1002409. doi: 10.1371/journal.pbio.1002409. PubMed DOI PMC
Hopkins M., Kailasan S., Cohen A., Roux S., Tucker K.P., Shevenell A., Agbandje-McKenna M., Breitbart M. Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein. ISME J. 2014;8:2093–2103. doi: 10.1038/ismej.2014.43. PubMed DOI PMC
Kivelä H.M., Männistö R.H., Kalkkinen N., Bamford D.H. Purification and Protein Composition of PM2, the First Lipid-Containing Bacterial Virus To Be Isolated. Virology. 1999;262:364–374. doi: 10.1006/viro.1999.9838. PubMed DOI
Kauffman K.M., Hussain F.A., Yang J., Arevalo P., Brown J.M., Chang W.K., VanInsberghe D., Elsherbini J., Sharma R.S., Cutler M.B., et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–122. doi: 10.1038/nature25474. PubMed DOI
Espejo R.T., Canelo E.S. Properties of bacteriophage PM2: a lipid-containing bacterial virus. Virology. 1968;34:738–747. doi: 10.1016/0042-6822(68)90094-9. PubMed DOI
Kivelä H.M., Kalkkinen N., Bamford D.H. Bacteriophage PM2 Has a Protein Capsid Surrounding a Spherical Proteinaceous Lipid Core. J. Virol. 2002;76:8169–8178. doi: 10.1128/JVI.76.16.8169-8178.2002. PubMed DOI PMC
Brum J.R., Schenck R.O., Sullivan M.B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 2013;7:1738–1751. doi: 10.1038/ismej.2013.67. PubMed DOI PMC
Yutin N., Bäckström D., Ettema T.J.G., Krupovic M., Koonin E.V. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virol. J. 2018;15:67. doi: 10.1186/s12985-018-0974-y. PubMed DOI PMC
Abrescia N.G.A., Bamford D.H., Grimes J.M., Stuart D.I. Structure unifies the viral universe. Annu. Rev. Biochem. 2012;81:795–822. doi: 10.1146/annurev-biochem-060910-095130. PubMed DOI
Woo A.C., Gaia M., Guglielmini J., Da Cunha V., Forterre P. Phylogeny of the Varidnaviria Morphogenesis Module: Congruence and Incongruence With the Tree of Life and Viral Taxonomy. Front. Microbiol. 2021;12:704052. doi: 10.3389/fmicb.2021.704052. PubMed DOI PMC
Bamford D.H. Do viruses form lineages across different domains of life? Res. Microbiol. 2003;154:231–236. doi: 10.1016/S0923-2508(03)00065-2. PubMed DOI
Azinas S., Bano F., Torca I., Bamford D.H., Schwartz G.A., Esnaola J., Oksanen H.M., Richter R.P., Abrescia N.G. Membrane-containing virus particles exhibit the mechanics of a composite material for genome protection. Nanoscale. 2018;10:7769–7779. doi: 10.1039/C8NR00196K. PubMed DOI PMC
Walker P.J., Siddell S.G., Lefkowitz E.J., Mushegian A.R., Adriaenssens E.M., Dempsey D.M., Dutilh B.E., Harrach B., Harrison R.L., Hendrickson R.C., et al. Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020) Arch. Virol. 2020;165:2737–2748. doi: 10.1007/s00705-020-04752-x. PubMed DOI
Peralta B., Gil-Carton D., Castaño-Díez D., Bertin A., Boulogne C., Oksanen H.M., Bamford D.H., Abrescia N.G.A. Mechanism of Membranous Tunnelling Nanotube Formation in Viral Genome Delivery. PLoS Biol. 2013;11:e1001667. doi: 10.1371/journal.pbio.1001667. PubMed DOI PMC
Krupovič M., Bamford D.H. Putative prophages related to lytic tailless marine dsDNA phage PM2 are widespread in the genomes of aquatic bacteria. BMC Genom. 2007;8:236. doi: 10.1186/1471-2164-8-236. PubMed DOI PMC
Joo Y.J., Kim H.-J., Lee J.Y., Kim J. Biochemical quantitation of PM2 phage DNA as a substrate for endonuclease assay. J. Microbiol. 2004;42:99–102. PubMed
Abrescia N.G.A., Grimes J.M., Kivelä H.M., Assenberg R., Sutton G.C., Butcher S.J., Bamford J.K.H., Bamford D.H., Stuart D.I. Insights into Virus Evolution and Membrane Biogenesis from the Structure of the Marine Lipid-Containing Bacteriophage PM2. Mol. Cell. 2008;31:749–761. doi: 10.1016/j.molcel.2008.06.026. PubMed DOI
Laanto E., Mäntynen S., De Colibus L., Marjakangas J., Gillum A., Stuart D.I., Ravantti J.J., Huiskonen J.T., Sundberg L.-R. Virus found in a boreal lake links ssDNA and dsDNA viruses. Proc. Natl. Acad. Sci. 2017;114:8378–8383. doi: 10.1073/pnas.1703834114. PubMed DOI PMC
Kejzar N., Laanto E., Rissanen I., Abrishami V., Selvaraj M., Moineau S., Ravantti J., Sundberg L.-R., Huiskonen J.T. Cryo-EM structure of ssDNA bacteriophage ΦCjT23 provides insight into early virus evolution. Nat. Commun. 2022;13:7478. doi: 10.1038/s41467-022-35123-6. PubMed DOI PMC
Kalatzis P.G., Mauritzen J.J., Winther-Have C.S., Michniewski S., Millard A., Tsertou M.I., Katharios P., Middelboe M. Staying below the Radar: Unraveling a New Family of Ubiquitous “Cryptic” Non-Tailed Temperate Vibriophages and Implications for Their Bacterial Hosts. Int. J. Mol. Sci. 2023;24:3937. doi: 10.3390/ijms24043937. PubMed DOI PMC
Strnad H., Lapidus A., Paces J., Ulbrich P., Vlcek C., Paces V., Haselkorn R. Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003. J. Bacteriol. 2010;192:3545–3546. doi: 10.1128/JB.00366-10. PubMed DOI PMC
Ding H., Moksa M.M., Hirst M., Beatty J.T. Draft Genome Sequences of Six Rhodobacter capsulatus Strains, YW1, YW2, B6, Y262, R121, and DE442. Genome Announc. 2014;2:e00050-14. doi: 10.1128/genomeA.00050-14. PubMed DOI PMC
Weaver P.F., Wall J.D., Gest H. Characterization of Rhodopseudomonas capsulata. Arch. Microbiol. 1975;105:207–216. doi: 10.1007/BF00447139. PubMed DOI
Leidenfrost R.M., Wappler N., Wünschiers R. Draft Genome Assembly of Rhodobacter sphaeroides 2.4.1 Substrain H2 from Nanopore Data. Microbiol. Resour. Announc. 2020;9:e00414-20. doi: 10.1128/MRA.00414-20. PubMed DOI PMC
Wall J.D., Weaver P.F., Gest H. Gene transfer agents, bacteriophages, and bacteriocins of Rhodopseudomonas capsulata. Arch. Microbiol. 1975;105:217–224. doi: 10.1007/BF00447140. PubMed DOI
Duyvesteyn H.M.E., Ginn H.M., Pietilä M.K., Wagner A., Hattne J., Grimes J.M., Hirvonen E., Evans G., Parsy M.-L., Sauter N.K., et al. Towards in cellulo virus crystallography. Sci. Rep. 2018;8:3771. doi: 10.1038/s41598-018-21693-3. PubMed DOI PMC
Kivelä H.M., Daugelavičius R., Hankkio R.H., Bamford J.K.H., Bamford D.H. Penetration of Membrane-Containing Double-Stranded-DNA Bacteriophage PM2 into Pseudoalteromonas Hosts. J. Bacteriol. 2004;186:5342–5354. doi: 10.1128/JB.186.16.5342-5354.2004. PubMed DOI PMC
Gudlavalleti B.S., Phung T., Barton C.L., Becker A., Graul B.L., Griffin J.T., Hays C.J., Horn B., Liang D.R., Rutledge L.M., et al. Whole genome sequencing identifies an allele responsible for clear vs. turbid plaque morphology in a Mycobacteriophage. BMC Microbiol. 2020;20:148. doi: 10.1186/s12866-020-01833-4. PubMed DOI PMC
Bondy-Denomy J., Qian J., Westra E.R., Buckling A., Guttman D.S., Davidson A.R., Maxwell K.L. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 2016;10:2854–2866. doi: 10.1038/ismej.2016.79. PubMed DOI PMC
Carnoy C., Roten C.-A. The dif/Xer Recombination Systems in Proteobacteria. PLoS One. 2009;4:e6531. doi: 10.1371/journal.pone.0006531. PubMed DOI PMC
Huber K.E., Waldor M.K. Filamentous phage integration requires the host recombinases XerC and XerD. Nature. 2002;417:656–659. doi: 10.1038/nature00782. PubMed DOI
Brimacombe C.A., Ding H., Beatty J.T. Rhodobacter capsulatus DprA is essential for RecA-mediated gene transfer agent (RcGTA) recipient capability regulated by quorum-sensing and the CtrA response regulator. Mol. Microbiol. 2014;92:1260–1278. doi: 10.1111/mmi.12628. PubMed DOI
Fogg P.C.M. Identification and characterization of a direct activator of a gene transfer agent. Nat. Commun. 2019;10:595. doi: 10.1038/s41467-019-08526-1. PubMed DOI PMC
Mascolo E., Adhikari S., Caruso S.M., deCarvalho T., Folch Salvador A., Serra-Sagristà J., Young R., Erill I., Curtis P.D. The transcriptional regulator CtrA controls gene expression in Alphaproteobacteria phages: Evidence for a lytic deferment pathway. Front. Microbiol. 2022;13:918015. doi: 10.3389/fmicb.2022.918015. PubMed DOI PMC
Kropinski A.M. Measurement of the rate of attachment of bacteriophage to cells. Methods Mol. Biol. 2009;501:151–155. doi: 10.1007/978-1-60327-164-6_15. PubMed DOI
Storms Z.J., Arsenault E., Sauvageau D., Cooper D.G. Bacteriophage adsorption efficiency and its effect on amplification. Bioprocess Biosyst. Eng. 2010;33:823–831. doi: 10.1007/s00449-009-0405-y. PubMed DOI
Bamford D.H., Rouhiainen L., Takkinen K., Söderlund H. Comparison of the Lipid-containing Bacteriophages PRD1, PR3, PR4, PR5 and L17. J. Gen. Virol. 1981;57:365–373. doi: 10.1099/0022-1317-57-2-365. PubMed DOI
Zhang Y., Jiao N. Roseophage RDJLΦ1, Infecting the Aerobic Anoxygenic Phototrophic Bacterium Roseobacter denitrificans OCh114. Appl. Environ. Microbiol. 2009;75:1745–1749. doi: 10.1128/AEM.02131-08. PubMed DOI PMC
Meier-Kolthoff J.P., Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics. 2017;33:3396–3404. doi: 10.1093/bioinformatics/btx440. PubMed DOI PMC
Zimmermann L., Stephens A., Nam S.-Z., Rau D., Kübler J., Lozajic M., Gabler F., Söding J., Lupas A.N., Alva V. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J. Mol. Biol. 2018;430:2237–2243. doi: 10.1016/j.jmb.2017.12.007. PubMed DOI
Yutin N., Rayko M., Antipov D., Mutz P., Wolf Y.I., Krupovic M., Koonin E.V. Varidnaviruses in the Human Gut: A Major Expansion of the Order Vinavirales. Viruses. 2022;14:1842. doi: 10.3390/v14091842. PubMed DOI PMC
Hyman P. Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals. 2019;12:35. doi: 10.3390/ph12010035. PubMed DOI PMC
Poxleitner M., Pope W., Jacobs-Sera D., Sivanathan V., Hatfull G. Chapter 5: Isolation. Sea Phage Discovery Guide. Howard Hughes Medical Institute; 2018. https://seaphagesphagediscoveryguide.helpdocsonline.com/5-0-toc
Sharma S., Datta S., Chatterjee S., Dutta M., Samanta J., Vairale M.G., Gupta R., Veer V., Dwivedi S.K. Isolation and characterization of a lytic bacteriophage against Pseudomonas aeruginosa. Sci. Rep. 2021;11:19393. doi: 10.1038/s41598-021-98457-z. PubMed DOI PMC
Henry M., Lavigne R., Debarbieux L. Predicting In Vivo Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary Infections. Antimicrob. Agents Chemother. 2013;57:5961–5968. doi: 10.1128/AAC.01596-13. PubMed DOI PMC
Brimacombe C.A., Stevens A., Jun D., Mercer R., Lang A.S., Beatty J.T. Quorum-sensing regulation of a capsular polysaccharide receptor for the Rhodobacter capsulatus gene transfer agent (RcGTA) Mol. Microbiol. 2013;87:802–817. doi: 10.1111/mmi.12132. PubMed DOI PMC
Sherlock D., Fogg P.C.M. Loss of the Rhodobacter capsulatus Serine Acetyl Transferase Gene, cysE1, Impairs Gene Transfer by Gene Transfer Agents and Biofilm Phenotypes. Appl. Environ. Microbiol. 2022;88:e0094422. doi: 10.1128/aem.00944-22. PubMed DOI PMC
Bazinet C.W., King J. A late gene product of phage P22 affecting virus infectivity. Virology. 1985;143:368–379. doi: 10.1016/0042-6822(85)90377-0. PubMed DOI
Westbye A.B., Leung M.M., Florizone S.M., Taylor T.A., Johnson J.A., Fogg P.C., Beatty J.T. Phosphate concentration and the putative sensor kinase protein CckA modulate cell lysis and release of the Rhodobacter capsulatus gene transfer agent. J. Bacteriol. 2013;195:5025–5040. doi: 10.1128/JB.00669-13. PubMed DOI PMC
Männistö R.H., Grahn A.M., Bamford D.H., Bamford J.K.H. Transcription of Bacteriophage PM2 Involves Phage-Encoded Regulators of Heterologous Origin. J. Bacteriol. 2003;185:3278–3287. doi: 10.1128/JB.185.11.3278-3287.2003. PubMed DOI PMC
Benešík M., Nováček J., Janda L., Dopitová R., Pernisová M., Melková K., Tišáková L., Doškař J., Žídek L., Hejátko J., Pantůček R. Role of SH3b binding domain in a natural deletion mutant of Kayvirus endolysin LysF1 with a broad range of lytic activity. Virus Genes. 2018;54:130–139. doi: 10.1007/s11262-017-1507-2. PubMed DOI
Rodríguez-Rubio L., Martínez B., Donovan D.M., Rodríguez A., García P. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit. Rev. Microbiol. 2013;39:427–434. doi: 10.3109/1040841X.2012.723675. PubMed DOI
Rydman P.S., Bamford D.H. The Lytic Enzyme of Bacteriophage PRD1 Is Associated with the Viral Membrane. J. Bacteriol. 2002;184:104–110. doi: 10.1128/JB.184.1.104-110.2002. PubMed DOI PMC
Fogg M.J., Wilkinson A.J. Higher-throughput approaches to crystallization and crystal structure determination. Biochem. Soc. Trans. 2008;36:771–775. doi: 10.1042/BST0360771. PubMed DOI
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Besemer J., Lomsadze A., Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–2618. doi: 10.1093/nar/29.12.2607. PubMed DOI PMC
Carver T., Harris S.R., Berriman M., Parkhill J., McQuillan J.A. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–469. doi: 10.1093/bioinformatics/btr703. PubMed DOI PMC
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. ColabFold: making protein folding accessible to all. Nat. Methods. 2022;19:679–682. doi: 10.1038/s41592-022-01488-1. PubMed DOI PMC
Holm L. DALI and the persistence of protein shape. Protein Sci. 2020;29:128–140. doi: 10.1002/pro.3749. PubMed DOI PMC
Kans J. Entrez Direct: E-utilities on the Unix Command Line. Entrez Programming Utilities Help. NCBI; 2022. pp. 85–186.https://www.ncbi.nlm.nih.gov/books/NBK179288
Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Minh B.Q., Nguyen M.A.T., von Haeseler A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Kremer J.R., Mastronarde D.N., McIntosh J.R. Computer Visualization of Three-Dimensional Image Data Using IMOD. J. Struct. Biol. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013. PubMed DOI
Goddard T.D., Huang C.C., Meng E.C., Pettersen E.F., Couch G.S., Morris J.H., Ferrin T.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018;27:14–25. doi: 10.1002/pro.3235. PubMed DOI PMC
Wickham H. Springer; 2016. ggplot2, Elegant Graphics for Data Analysis.
Lee I., Ouk Kim Y., Park S.C., Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016;66:1100–1103. doi: 10.1099/ijsem.0.000760. PubMed DOI
Ormerod J.G., Ormerod K.S., Gest H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch. Biochem. Biophys. 1961;94:449–463. doi: 10.1016/0003-9861(61)90073-x. PubMed DOI
Kropinski A.M. Practical Advice on the One-Step Growth Curve. Methods Mol. Biol. 2018;1681:41–47. doi: 10.1007/978-1-4939-7343-9_3. PubMed DOI
Sambrook J., Russell D.W. In: Molecular cloning: A Laboratory Manual. Irwin N., Janssen K.A., editors. Vol. 8. Cold Spring Harbor Laboratory Press; 2001. Commonly used techniques in molecular cloning.
Hynes A., Lang A. Rhodobacter capsulatus Gene Transfer Agent (RcGTA) Activity Bioassays. Bio. Protoc. 2013;3:e317. doi: 10.21769/BioProtoc.317. DOI
Grybchuk D., Macedo D.H., Kleschenko Y., Kraeva N., Lukashev A.N., Bates P.A., Kulich P., Leštinová T., Volf P., Kostygov A.Y., Yurchenko V. The First Non-LRV RNA Virus in Leishmania. Viruses. 2020;12:168. doi: 10.3390/v12020168. PubMed DOI PMC
Fogg P.C.M., Westbye A.B., Beatty J.T. One for All or All for One: Heterogeneous Expression and Host Cell Lysis Are Key to Gene Transfer Agent Activity in Rhodobacter capsulatus. PLoS One. 2012;7:e43772. doi: 10.1371/journal.pone.0043772. PubMed DOI PMC