Penton blooming, a conserved mechanism of genome delivery used by disparate microviruses
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
P20 GM152333
NIGMS NIH HHS - United States
224067/Z/21/Z
Wellcome Trust (WT)
28535
Deutscher Akademischer Austauschdienst (DAAD)
206377
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
1P20GM152333-01:8040
HHS | NIH | National Institute of General Medical Sciences (NIGMS)
RGPIN 2018-03898
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (CRSNG)
109363/Z/15/A
Wellcome Trust (WT)
U24 GM129541
NIGMS NIH HHS - United States
PubMed
40105351
PubMed Central
PMC11980548
DOI
10.1128/mbio.03713-24
Knihovny.cz E-resources
- Keywords
- Microviridae, Rhodobacter, electron microscopy, structural biology, virion structure,
- MeSH
- Cryoelectron Microscopy MeSH
- Genome, Viral * MeSH
- Capsid ultrastructure MeSH
- Microviridae * genetics physiology ultrastructure MeSH
- Capsid Proteins genetics metabolism chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Capsid Proteins MeSH
UNLABELLED: Microviruses are single-stranded DNA viruses infecting bacteria, characterized by T = 1 shells made of single jelly-roll capsid proteins. To understand how microviruses infect their host cells, we have isolated and studied an unusually large microvirus, Ebor. Ebor belongs to the proposed "Tainavirinae" subfamily of Microviridae and infects the model Alphaproteobacterium Rhodobacter capsulatus. Using cryogenic electron microscopy, we show that the enlarged capsid of Ebor is the result of an extended C-terminus of the major capsid protein. The extra packaging space accommodates genes encoding a lytic enzyme and putative methylase, both absent in microviruses with shorter genomes. The capsid is decorated with protrusions at its 3-fold axes, which we show to recognize lipopolysaccharides on the host surface. Cryogenic electron tomography shows that during infection, Ebor attaches to the host cell via five such protrusions. This attachment brings a single pentameric capsomer into close contact with the cell membrane, creating a special vertex through which the genome is ejected. Both subtomogram averaging and single particle analysis identified two intermediates of capsid opening, showing that the interacting penton opens from its center via the separation of individual capsomer subunits. Structural comparison with the model Bullavirinae phage phiX174 suggests that this genome delivery mechanism may be widely present across Microviridae. IMPORTANCE: Tailless Microviridae bacteriophages are major components of the global virosphere. Notably, microviruses are prominent members of the mammalian gut virome, and certain compositions have been linked to serious health disorders; however, a molecular understanding of how they initiate infection of their host remains poorly characterized. We demonstrate that trimeric protrusions located at the corners of a single microvirus capsomer mediate host cell attachment. This interaction triggers opening of the capsomer, driven by separation of subunits from its center, much like flower petals open during blooming. This extensive opening explains how the genome translocation apparatus, along with the genome itself, is able to exit the capsid. "Penton blooming" likely represents a conserved mechanism shared by diverse viruses possessing similar capsid architectures.
Department of Biology University of York York United Kingdom
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Microbiology and Immunology University of British Columbia Vancouver Canada
Department of Microbiology and Molecular Genetics Oklahoma State University Tulsa USA
Materials and Structural Analysis Thermo Fisher Scientific Eindhoven Netherlands
York Biomedical Research Institute University of York York United Kingdom
See more in PubMed
Kirchberger PC, Martinez ZA, Ochman H. 2022. Organizing the global diversity of microviruses. mBio 13:e00588-22. doi:10.1128/mbio.00588-22 PubMed DOI PMC
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, Bryant DA, Bhaya D, Krupovic M, Dolja VV, Kyrpides NC, Koonin EV, Gophna U, RNA Virus Discovery Consortium . 2022. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 185:4023–4037. doi:10.1016/j.cell.2022.08.023 PubMed DOI
Brum JR, Schenck RO, Sullivan MB. 2013. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J 7:1738–1751. doi:10.1038/ismej.2013.67 PubMed DOI PMC
Tisza MJ, Pastrana DV, Welch NL, Stewart B, Peretti A, Starrett GJ, Pang Y-Y, Krishnamurthy SR, Pesavento PA, McDermott DH. 2020. Discovery of several thousand highly diverse circular DNA viruses. Elife 9:e51971. doi:10.7554/eLife.51971 PubMed DOI PMC
Yoshida M, Mochizuki T, Urayama S-I, Yoshida-Takashima Y, Nishi S, Hirai M, Nomaki H, Takaki Y, Nunoura T, Takai K. 2018. Quantitative Viral community DNA analysis reveals the dominance of single-stranded DNA viruses in offshore upper bathyal sediment from Tohoku, Japan. Front Microbiol 9. doi:10.3389/fmicb.2018.00075 PubMed DOI PMC
Zuo T, Sun Y, Wan Y, Yeoh YK, Zhang F, Cheung CP, Chen N, Luo J, Wang W, Sung JJY, Chan PKS, Wang K, Chan FKL, Miao Y, Ng SC. 2020. Human-Gut-DNA virome variations across geography, ethnicity, and urbanization. Cell Host Microbe 28:741–751. doi:10.1016/j.chom.2020.08.005 PubMed DOI
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, Martínez-Hernández F, Burokas A, Coll C, Moreno-Navarrete JM, Zapata-Tona C, Pedraza S, Pérez-Brocal V, Ramió-Torrentà L, Ricart W, Moya A, Martínez-García M, Maldonado R, Fernández-Real J-M. 2022. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe 30:340–356. doi:10.1016/j.chom.2022.01.013 PubMed DOI
Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco CL, Zhao G, Fleshner P, Stappenbeck TS, McGovern DPB, Keshavarzian A, Mutlu EA, Sauk J, Gevers D, Xavier RJ, Wang D, Parkes M, Virgin HW. 2015. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–460. doi:10.1016/j.cell.2015.01.002 PubMed DOI PMC
Olo Ndela E, Roux S, Henke C, Sczyrba A, Sime Ngando T, Varsani A, Enault F. 2023. Reekeekee- and roodoodooviruses, two different Microviridae clades constituted by the smallest DNA phages . Virus Evol 9. doi:10.1093/ve/veac123 PubMed DOI PMC
Zhang L, Li Z, Bao M, Li T, Fang F, Zheng Y, Liu Y, Xu M, Chen J, Deng X, Zheng Z. 2021. A novel microviridae phage (CLasMV1) from “candidatus Liberibacter asiaticus”. Front Microbiol 12. doi:10.3389/fmicb.2021.754245 PubMed DOI PMC
Kirchberger PC, Ochman H. 2023. Microviruses: a world beyond phiX174. Annu Rev Virol 10:99–118. doi:10.1146/annurev-virology-100120-011239 PubMed DOI
Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, Davison AJ, Dempsey DM, Dutilh BE, García ML, et al. . 2021. Changes to virus taxonomy and to the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2021). Arch Virol 166:2633–2648. doi:10.1007/s00705-021-05156-1 PubMed DOI
Chipman PR, Agbandje-McKenna M, Renaudin J, Baker TS, McKenna R. 1998. Structural analysis of the spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the microviridae. Structure 6:135–145. doi:10.1016/s0969-2126(98)00016-1 PubMed DOI PMC
Mietzsch M, Kailasan S, Bennett A, Chipman P, Fane B, Huiskonen JT, Clarke IN, McKenna R. 2024. The Structure of spiroplasma Virus 4: exploring the capsid diversity of the microviridae. Viruses 16:1103. doi:10.3390/v16071103 PubMed DOI PMC
Kirchberger PC, Ochman H. 2020. Resurrection of a global, metagenomically defined gokushovirus. Elife 9:e51599. doi:10.7554/eLife.51599 PubMed DOI PMC
Lee H, Baxter AJ, Bator CM, Fane BA, Hafenstein SL. 2022. Cryo-EM structure of gokushovirus ΦEC6098 reveals a novel capsid architecture for a single-scaffolding protein, microvirus assembly system. J Virol 96:e00990-22. doi:10.1128/jvi.00990-22 PubMed DOI PMC
Sun Y, Roznowski AP, Tokuda JM, Klose T, Mauney A, Pollack L, Fane BA, Rossmann MG. 2017. Structural changes of tailless bacteriophage ΦX174 during penetration of bacterial cell walls. Proc Natl Acad Sci USA 114:13708–13713. doi:10.1073/pnas.1716614114 PubMed DOI PMC
Sun L, Young LN, Zhang X, Boudko SP, Fokine A, Zbornik E, Roznowski AP, Molineux IJ, Rossmann MG, Fane BA. 2014. Icosahedral bacteriophage ΦX174 forms a tail for DNA transport during infection. Nature 505:432–435. doi:10.1038/nature12816 PubMed DOI
Zucker F, Bischoff V, Olo Ndela E, Heyerhoff B, Poehlein A, Freese HM, Roux S, Simon M, Enault F, Moraru C. 2022. New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial alphaproteobacteria. Virus Evol 8:veac070. doi:10.1093/ve/veac070 PubMed DOI PMC
Bárdy P, Füzik T, Hrebík D, Pantůček R, Thomas Beatty J, Plevka P. 2020. Structure and mechanism of DNA delivery of a gene transfer agent. Nat Commun 11:3034. doi:10.1038/s41467-020-16669-9 PubMed DOI PMC
Strnad H, Lapidus A, Paces J, Ulbrich P, Vlcek C, Paces V, Haselkorn R. 2010. Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003. J Bacteriol 192:3545–3546. doi:10.1128/JB.00366-10 PubMed DOI PMC
Ding H, Moksa MM, Hirst M, Beatty JT. 2014. Draft genome sequences of six Rhodobacter capsulatus strains, YW1, YW2, B6, Y262, R121, and DE442. Genome Announc 2:e00050-14. doi:10.1128/genomeA.00050-14 PubMed DOI PMC
Bárdy P, MacDonald CIW, Pantůček R, Antson AA, Fogg PCM. 2023. Jorvik: a membrane-containing phage that will likely found a new family within vinavirales. iScience 26:108104. doi:10.1016/j.isci.2023.108104 PubMed DOI PMC
Das B, Martínez E, Midonet C, Barre F-X. 2013. Integrative mobile elements exploiting Xer recombination. Trends Microbiol 21:23–30. doi:10.1016/j.tim.2012.10.003 PubMed DOI
Carnoy C, Roten C-A. 2009. The dif/Xer recombination systems in proteobacteria. PLoS One 4:e6531. doi:10.1371/journal.pone.0006531 PubMed DOI PMC
Solioz M, Marrs B. 1977. The gene transfer agent of Rhodopseudomonas capsulata. Arch Biochem Biophys 181:300–307. doi:10.1016/0003-9861(77)90508-2 PubMed DOI
Yen HC, Hu NT, Marrs BL. 1979. Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonas capsulata. J Mol Biol 131:157–168. doi:10.1016/0022-2836(79)90071-8 PubMed DOI
Roux S, Krupovic M, Poulet A, Debroas D, Enault F. 2012. Evolution and diversity of the microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS One 7:e40418. doi:10.1371/journal.pone.0040418 PubMed DOI PMC
Gabler F, Nam S, Till S, Mirdita M, Steinegger M, Söding J, Lupas AN, Alva V. 2020. Protein sequence analysis using the MPI bioinformatics toolkit. CP in Bioinformatics 72:e108. doi:10.1002/cpbi.108 PubMed DOI
Sanchez-Garcia R, Gomez-Blanco J, Cuervo A, Carazo JM, Sorzano COS, Vargas J. 2021. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol 4:874. doi:10.1038/s42003-021-02399-1 PubMed DOI PMC
McKenna R, Xia D, Willingmann P, Ilag LL, Krishnaswamy S, Rossmann MG, Olson NH, Baker TS, Incardona NL. 1992. Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications. Nature 355:137–143. doi:10.1038/355137a0 PubMed DOI PMC
Ilag LL, McKenna R, Yadav MP, BeMiller JN, Incardona NL, Rossmann MG. 1994. Calcium Ion-induced structural changes in bacteriophage φ X174. J Mol Biol 244:291–300. doi:10.1006/jmbi.1994.1730 PubMed DOI
Buchta D, Füzik T, Hrebík D, Levdansky Y, Sukeník L, Mukhamedova L, Moravcová J, Vácha R, Plevka P. 2019. Enterovirus particles expel capsid pentamers to enable genome release. Nat Commun 10:1138. doi:10.1038/s41467-019-09132-x PubMed DOI PMC
Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. doi:10.1016/j.jmb.2007.05.022 PubMed DOI
Adams PG, Lamoureux L, Swingle KL, Mukundan H, Montaño GA. 2014. Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks. Biophys J 106:2395–2407. doi:10.1016/j.bpj.2014.04.016 PubMed DOI PMC
Stacey JCV, Tan A, Lu JM, James LC, Dick RA, Briggs JAG. 2023. Two structural switches in HIV-1 capsid regulate capsid curvature and host factor binding. Proc Natl Acad Sci USA 120:e2220557120. doi:10.1073/pnas.2220557120 PubMed DOI PMC
Bernal RA, Hafenstein S, Esmeralda R, Fane BA, Rossmann MG. 2004. The phiX174 protein J mediates DNA packaging and viral attachment to host cells. J Mol Biol 337:1109–1122. doi:10.1016/j.jmb.2004.02.033 PubMed DOI
Incardona NL, Blonski R, Feeney W. 1972. Mechanism of adsorption and eclipse of bacteriophage phi X174. I. In vitro conformational change under conditions of eclipse. J Virol 9:96–101. doi:10.1128/JVI.9.1.96-101.1972 PubMed DOI PMC
Schrad JR, Abrahão JS, Cortines JR, Parent KN. 2020. Structural and proteomic characterization of the initiation of giant virus infection. Cell 181:1046–1061. doi:10.1016/j.cell.2020.04.032 PubMed DOI PMC
Karunatilaka KS, Filman DJ, Strauss M, Loparo JJ, Hogle JM. 2021. Real-time imaging of polioviral RNA translocation across a membrane. mBio 12:e03695-20. doi:10.1128/mBio.03695-20 PubMed DOI PMC
ORMEROD JG, ORMEROD KS, GEST H. 1961. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys 94:449–463. doi:10.1016/0003-9861(61)90073-x PubMed DOI
Wall JD, Weaver PF, Gest H. 1975. Gene transfer agents, bacteriophages, and bacteriocins of rhodopseudomonas capsulata. Arch Microbiol 105:217–224. doi:10.1007/BF00447140 PubMed DOI
Cian MB, Giordano NP, Mettlach JA, Minor KE, Dalebroux ZD. 2020. Separation of the cell envelope for gram-negative bacteria into inner and outer membrane fractions with technical adjustments for Acinetobacter baumannii. J Vis Exp 158:e60517. doi:10.3791/60517 PubMed DOI PMC
Beatty JT, Gest H. 1981. Generation of succinyl-coenzyme A in photosynthetic bacteria. Arch Microbiol 129:335–340. doi:10.1007/BF00406457 DOI
Lam JS, Anderson EM, Hao Y. 2014. LPS quantitation procedures. Edited by Filloux A. and Ramos J. L.. Methods Mol Biol 1149:375–402. doi:10.1007/978-1-4939-0473-0_31 PubMed DOI
Leung MM, Brimacombe CA, Spiegelman GB, Beatty JT. 2012. The GtaR protein negatively regulates transcription of the gtaRI operon and modulates gene transfer agent (RcGTA) expression in Rhodobacter capsulatus. Mol Microbiol 83:759–774. doi:10.1111/j.1365-2958.2011.07963.x PubMed DOI PMC
Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. 2016. Assembly of long error-prone reads using de Bruijn graphs. Proc Natl Acad Sci USA 113:E8396–E8405. doi:10.1073/pnas.1604560113 PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153 PubMed DOI
Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618. doi:10.1093/nar/29.12.2607 PubMed DOI PMC
Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. 2012. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–469. doi:10.1093/bioinformatics/btr703 PubMed DOI PMC
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389 PubMed DOI PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. . 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. doi:10.1038/s41586-021-03819-2 PubMed DOI PMC
Underwood AP, Green J. 2004. MOP-UP: an online tool for finding strain-specific primers or motifs in DNA or protein alignments. Clin Microbiol Infect 10:948–950. doi:10.1111/j.1469-0691.2004.00943.x PubMed DOI
Sievers F, Higgins DG. 2018. Clustal omega for making accurate alignments of many protein sequences. Protein Sci 27:135–145. doi:10.1002/pro.3290 PubMed DOI PMC
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033 PubMed DOI PMC
Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, Gascuel O. 2018. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556:452–456. doi:10.1038/s41586-018-0043-0 PubMed DOI PMC
Fogg MJ, Wilkinson AJ. 2008. Higher-throughput approaches to crystallization and crystal structure determination. Biochem Soc Trans 36:771–775. doi:10.1042/BST0360771 PubMed DOI
Benešík M, Nováček J, Janda L, Dopitová R, Pernisová M, Melková K, Tišáková L, Doškař J, Žídek L, Hejátko J, Pantůček R. 2018. Role of SH3b binding domain in a natural deletion mutant of kayvirus endolysin LysF1 with a broad range of lytic activity. Virus Genes 54:130–139. doi:10.1007/s11262-017-1507-2 PubMed DOI
Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA. 2017. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332. doi:10.1038/nmeth.4193 PubMed DOI PMC
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH. 2018. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7:e42166. doi:10.7554/eLife.42166 PubMed DOI PMC
Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76. doi:10.1006/jsbi.1996.0013 PubMed DOI
Rohou A, Grigorieff N. 2015. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221. doi:10.1016/j.jsb.2015.08.008 PubMed DOI PMC
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30:70–82. doi:10.1002/pro.3943 PubMed DOI PMC
Zivanov J, Nakane T, Scheres SHW. 2019. A bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6:5–17. doi:10.1107/S205225251801463X PubMed DOI PMC
Kimanius D, Jamali K, Wilkinson ME, Lövestam S, Velazhahan V, Nakane T, Scheres SHW. 2024. Data-driven regularization lowers the size barrier of cryo-EM structure determination. Nat Methods 21:1216–1221. doi:10.1038/s41592-024-02304-8 PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. doi:10.1107/S0907444910007493 PubMed DOI PMC
Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. 2019. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75:861–877. doi:10.1107/S2059798319011471 PubMed DOI PMC
Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21. doi:10.1107/S0907444909042073 PubMed DOI PMC
Chen M, Bell JM, Shi X, Sun SY, Wang Z, Ludtke SJ. 2019. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat Methods 16:1161–1168. doi:10.1038/s41592-019-0591-8 PubMed DOI PMC
Bepler T, Morin A, Rapp M, Brasch J, Shapiro L, Noble AJ, Berger B. 2019. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 16:1153–1160. doi:10.1038/s41592-019-0575-8 PubMed DOI PMC
Schwab J, Kimanius D, Burt A, Dendooven T, Scheres SHW. 2023. DynaMight: estimating molecular motions with improved reconstruction from cryo-EM images. bioRxiv. doi:10.1101/2023.10.18.562877 PubMed DOI PMC
Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K, Chun M, Li P, Gohara DW, Dolinsky T, Konecny R, Koes DR, Nielsen JE, Head-Gordon T, Geng W, Krasny R, Wei G-W, Holst MJ, McCammon JA, Baker NA. 2018. Improvements to the APBS biomolecular solvation software suite. Protein Sci 27:112–128. doi:10.1002/pro.3280 PubMed DOI PMC
Chen M, Dai W, Sun SY, Jonasch D, He CY, Schmid MF, Chiu W, Ludtke SJ. 2017. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat Methods 14:983–985. doi:10.1038/nmeth.4405 PubMed DOI PMC