Hospital Wastewater-Important Source of Multidrug Resistant Coliform Bacteria with ESBL-Production
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33114613
PubMed Central
PMC7663260
DOI
10.3390/ijerph17217827
PII: ijerph17217827
Knihovny.cz E-zdroje
- Klíčová slova
- ESBL, antibiotic resistance, biofilm, efflux pumps, hospital wastewaters,
- MeSH
- antibakteriální látky farmakologie MeSH
- beta-laktamasy genetika MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence účinky léků genetika MeSH
- nemocnice MeSH
- odpadní voda * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-lactamase CTX-2 MeSH Prohlížeč
- beta-laktamasy MeSH
- odpadní voda * MeSH
This work compares the prevalence of antibiotic resistant coliform bacteria in hospital wastewater effluents in Slovak (SR) and Czech Republic (ČR). It also describes selected antibiotic resistant isolates in view of resistance mechanism and virulence factor. The highest number of multidrug resistant bacteria was detected in samples from the hospital in Valašské Meziříčí (ČR). More than half of resistant isolates showed multidrug resistance phenotype as well as strong ability to form biofilm. In 42% of isolates efflux pump overproduction was detected together with tetA and tetE genes. The production of extended-spectrum β-lactamases in coliform isolates was encoded mainly by blaTEM, blaCTX-M-2 and blaCTX-M-8/25 genes. About 62% of resistants contained a combination of two or more extended spectrum beta-lactamases (ESBL) genes. Our results strengthen the fact that hospital effluents are a source of multidrug resistant bacteria which can spread their resistance genes to other bacteria in wastewater treatment plants (WWTPs). Accordingly, hospital wastewater should be better treated before it enters urban sewerage.
Zobrazit více v PubMed
Barancheshme F., Munir M. Strategies to combat antibiotic resistance in the wastewater treatment plants. Front. Microbiol. 2018;8:1–12. doi: 10.3389/fmicb.2017.02603. PubMed DOI PMC
Mackuľak T., Nagyová K., Fáberová M., Grabic R., Koba O., Gál M., Birošová L. Utilization of Fenton-like reaction for antibiotics and resistant bacteria elimination in different parts of WWTP. Environ. Toxicol. Pharmacol. 2015;40:492–497. doi: 10.1016/j.etap.2015.07.002. PubMed DOI
Le T.H., Ng C., Chen H., Yi X.Z., Koh T.H., Barkham T.M., Zhou Z., Gin K.Y. Occurrences and characterization of antibiotic-resistant bacteria and genetic determinants of hospital wastewater in a tropical country. Antimicrob. Agents Chemother. 2016;60:7449–7456. doi: 10.1128/AAC.01556-16. PubMed DOI PMC
Jutkina J., Rutgersson C., Flach C.F., Joakim Larsson D.G. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci. Total Environ. 2016;548–549:131–138. doi: 10.1016/j.scitotenv.2016.01.044. PubMed DOI
Hocquet D., Muller A., Bertrand X. What happens in hospitals does not stay in hospitals: Antibiotic-resistant bacteria in hospital wastewater systems. J. Hosp. Infect. 2016;93:395–402. doi: 10.1016/j.jhin.2016.01.010. PubMed DOI
Islam M.A., Islam M., Hasan R., Hossain M.I., Nabi A., Rahman M., Goessens W.H.F., Endtz E.P., Boehm A.B., Faruque S.M. Environmental spread of New Delhi metallo-β-lactamase-1-producing multidrug-resistant bacteria in Dhaka, Bangladesh. Appl. Environ. Microbiol. 2017;83:e00793-17. doi: 10.1128/AEM.00793-17. PubMed DOI PMC
Lamba M., Graham D.W., Ahammad S.Z. Hospital wastewater releases of carbapenem-resistance pathogens and genes in urban India. Environ. Sci. Technol. 2017;51:13906–13912. doi: 10.1021/acs.est.7b03380. PubMed DOI
Mackuľak T., Grabic R., Špalková V., Belišová N., Škulcová A., Slavík O., Horký P., Gál M., Filip J., Híveš J., et al. Hospital wastewaters treatment: Fenton reaction vs. BDDE vs. ferrate(VI) Environ. Sci. Pollut. Res. Int. 2019;26:31812–31821. doi: 10.1007/s11356-019-06290-9. PubMed DOI
Tasca A.L., Clematis D., Stefanelli E., Panizza M., Puccini M. Ciprofloxacin removal: BDD anode coupled with solid polymer electrolyte and ultrasound irradiation. J. Water Process. Eng. 2020;33:101074. doi: 10.1016/j.jwpe.2019.101074. DOI
World Health Organisation, WHO WHO Publishes List of Bacteria for which New Antibiotics are Urgently Needed. 27 February 2017, News Release, Geneva. [(accessed on 25 October 2018)]; Available online: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
Pilmis B., Cattoir V., Lecointe D., Limelette A., Grall I., Mizrahi A., Marcade G., Poilane I., Guillard T., Bourgeois Nicolaos N., et al. Carriage of ESBL-producing Enterobacteriaceae in French hospitals: The PORTABLSE study. J. Hosp. Infect. 2018;98:247–252. doi: 10.1016/j.jhin.2017.11.022. PubMed DOI
Sabir N., Ikram A., Zaman G., Satti L., Gardezi A., Ahmed A., Ahmed P. Bacterial biofilm-based catheter-associated urinary tract infections: Causative pathogens and antibiotic resistance. Am. J. Infect. Control. 2017;45:1101–1105. doi: 10.1016/j.ajic.2017.05.009. PubMed DOI
Flemming H.C., Wingender J., Szewzyk U., Steinberg P., Rice S.A., Kjelleberg S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016;14:563–575. doi: 10.1038/nrmicro.2016.94. PubMed DOI
International Organization for Standardization . ISO 9308-1:2014. Water Quality—Enumeration of Escherichia Coli and Coliform Bacteria—Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora. International Organization for Standardization; Geneva, Switzerland: 2014.
Lépesová K., Kraková L., Pangallo D., Medveďová A., Olejníková P., Mackuľak T., Tichý J., Grabic R., Birošová L. Prevalence of antibiotic resistant coliform bacteria, Enterococcus spp. and Staphylococcus spp. in wastewater sewerage biofilm. J. Glob. Antimicrob. Resist. 2018;14:145–151. doi: 10.1016/j.jgar.2018.03.008. PubMed DOI
European Committee on Antimicrobial Susceptibility Testing, EUCAST . Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 8.0 Valid from 2018-01-01. EUCAST; Växjö, Sweden: 2018. pp. 1–95.
Clinical and Laboratory Standards Institute, CLSI . Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI; Wayne, PA, USA: 2017. pp. 1–282.
Hrabák J., Bergerová T. Detection of Broad-Spectrum Beta-Lactamases and AmpC in Enterobacteriaceae. State Health Institute; Prague, Czech Republic: 2008. pp. 1–9. (In Czech)
Martins M., McCusker M.P., Viveiros M., Couto I., Fanning S., Pagès J.M., Amaral L. A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiol. J. 2013;7:72–82. doi: 10.2174/1874285801307010072. PubMed DOI PMC
Taniguchi L., De Fátima Faria B., Rosa R.T., De Paula ECarvalho A., Gursky L.C., Elifio-Esposito S.L., Parahitiyawa N., Samaranayake L.P., Rosa E.A. Proposal of a low-cost protocol for colorimetric semi-quantification of secretory phospholipase by Candida albicans grown in planktonic and biofilm phases. J. Microbiol. Methods. 2009;78:171–174. doi: 10.1016/j.mimet.2009.05.012. PubMed DOI
Dallenne C., Da Costa A., Decré D., Favier C., Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010;65:490–495. doi: 10.1093/jac/dkp498. PubMed DOI
Memariani M., Peerayeh S.N., Salehi T.Z., Mostafavi S.K.S. Occurrence of SHV, TEM and CTX-M β-lactamase genes among enteropathogenic Escherichia coli strains isolated from children with diarrhea. Jundishapur J. Microbiol. 2015;8:1–8. doi: 10.5812/jjm.8(4)2015.15620. PubMed DOI PMC
Ng L.K., Martin I., Alfa M., Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes. 2001;15:209–215. doi: 10.1006/mcpr.2001.0363. PubMed DOI
Szczepanowski R., Linke B., Krahn I., Gartemann K.H., Gützkow T., Eichler W., Pühler A., Scglüter A. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology. 2009;155:2306–2319. doi: 10.1099/mic.0.028233-0. PubMed DOI
Luo Y., Yang F., Mathieu J., Mao D., Wang Q., Alvarez P.J.J. Proliferation of multidrug-resistant New Delhi metallo-β-lactamase genes in municipal wastewater treatment plants in Northern China. Environ. Sci. Technol. Lett. 2014;1:26–30. doi: 10.1021/ez400152e. DOI
Narciso-Da-Rocha C., Varela A.R., Schwartz T., Nunes O.C., Manaia C.M. blaTEM and vanA as indicator genes of antibiotic resistance contamination in a hospital–urban wastewater treatment plant system. J. Glob. Antimicrob. Resist. 2014;2:309–315. doi: 10.1016/j.jgar.2014.10.001. PubMed DOI
Berendonk T.U., Manaia C.M., Merlin C., Fatta-Kassinos D., Cytryn E., Walsh F., Bürgmann H., Sørum H., Norström M., Pons M.N., et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015;13:310–317. doi: 10.1038/nrmicro3439. PubMed DOI
Szekeres E., Baricz A., Chiriac C.M., Farkas A., Opris O., Soran M.L., Andrei A.S., Rudi K., Balcázar J.L., Dragos N., et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ. Pollut. 2017;225:304–315. doi: 10.1016/j.envpol.2017.01.054. PubMed DOI
Lépesová K., Mackuľak T., Birošová L. Nutrients, Wastewater and Leachate: Testing, Risks and Hazards. Nova Science Publishers; New York, NY, USA: 2018. The prevalence of antibiotic resistant fecal coliform bacteria in wastewater treatment plants; pp. 57–88.
European Centre for Disease Prevention and Control ECDC: Country Overview of Antimicrobial Consumption. [(accessed on 25 October 2020)]; Available online: https://www.ecdc.europa.eu/en/antimicrobial-consumption/database/country-overview.
Birošová L., Mackuľak T., Bodík I., Ryba J., Škubák J., Grabic R. Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. Sci. Total Environ. 2014;490:440–444. doi: 10.1016/j.scitotenv.2014.05.030. PubMed DOI
Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed DOI
Azzam M.I., Ezzat S.M., Othman B.A., El-Dougdoug K.A. Antibiotics resistance phenomenon and virulence ability in bacteria from water environment. Water Sci. 2017;31:109–121. doi: 10.1016/j.wsj.2017.10.001. DOI
Qiao M., Ying G.G., Singer A.C., Zhu Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018;110:160–172. doi: 10.1016/j.envint.2017.10.016. PubMed DOI
Conte D., Kasuko Palmeiro J., Da Silva Nogueira K., Rosa De Lima M.T., Cardoso M.A., Pontarolo R., Pontes F.L.D., Dalla-Costa L.M. Characterization of CTX-M enzymes, quinolones resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol. Environ. Saf. 2017;136:62–69. doi: 10.1016/j.ecoenv.2016.10.031. PubMed DOI
Maheshwari M., Yaser N.H., Naz S., Fatima M., Ahmad I. Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources. J. Glob. Antimicrob. Resist. 2016;5:22–26. doi: 10.1016/j.jgar.2016.01.008. PubMed DOI
Daoud Z., Salem-Sokhn E., Dahdouh E., Irani J., Matar G.M., Doron S. Resistance and clonality in Escherichia coli and Klebsiella spp. and relationship with antibiotic consumption in major Lebanese hospital. J. Glob. Antimicrob. Resist. 2017;11:45–51. doi: 10.1016/j.jgar.2017.07.011. PubMed DOI
Olowe O.A., Idris O.J., Taiwo S.S. Prevalence of tet genes mediating tetracycline resistance in Escherichia coli clinical isolates in Osun State, Nigeria. Eur. J. Microbiol. Immunol. 2013;3:135–140. doi: 10.1556/EuJMI.3.2013.2.7. PubMed DOI PMC
Adesoji A.T., Ogunjobi A.A., Olatoye I.O., Douglas D.R. Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria. Ann. Clin. Microbiol. Antimicrob. 2015;14:1–8. doi: 10.1186/s12941-015-0093-1. PubMed DOI PMC
Møller T.S.B., Overgaard M., Nielsen S.S., Bortolaia V., Sommer M.O.A., Guardabassi L., Olsen J.E. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiol. 2016;16:1–8. doi: 10.1186/s12866-016-0649-z. PubMed DOI PMC
Varela A.R., Andre S., Nunes O.C., Manaia C.M. Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system. Water Res. 2014;54:327–336. doi: 10.1016/j.watres.2014.02.003. PubMed DOI
Chopra I., Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001;65:232–260. doi: 10.1128/MMBR.65.2.232-260.2001. PubMed DOI PMC
Yamashita N., Katakawa Y., Tanaka H. Occurrence of antimicrobial resistance bacteria in the Yodo River basin, Japan and determination of beta-lactamases producing bacteria. Ecotoxicol. Environ. Saf. 2017;143:38–45. doi: 10.1016/j.ecoenv.2017.04.053. PubMed DOI
European Committee on Antimicrobial Susceptibility Testing, EUCAST . EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. EUCAST; Växjö, Sweden: 2017. pp. 1–43.
Thenmozhi S., Kannaiyan M., Sureshkumar B.T., Mickymaray S. Antibiotic resistance mechanisms of ESBL producing Enterobacteriaceae in clinical field: A review. Int. J. Pure Appl. Biosci. 2014;2:207–224.
Zhu M., Yang G., Li A., Zong L., Dong Z., Lu J., Zhang K., Cheng C., Chang Q., Wu X., et al. Identification and molecular characterization of Escherichia coli blaSHV genes in a Chinese teaching hospital. Gene. 2017;600:29–35. doi: 10.1016/j.gene.2016.11.035. PubMed DOI
Seyedjavadi S.S., Goudarzi M., Sabzehali F. Relation between blaTEM, blaSHV and blaCTX-M genes and acute urinary tract infections. J. Acute Dis. 2016;5:71–76. doi: 10.1016/j.joad.2015.07.007. DOI
Haller L., Chen H., Ng C.H., Hoang Le T., Koh T.H., Barkham T., Sobsey M., Gin K.Y. Occurrence and characteristics of extended-spectrum β-lactamase- and carbapenemases-producing bacteria from hospital effluents in Singapore. Sci. Total Environ. 2018;615:1119–1125. doi: 10.1016/j.scitotenv.2017.09.217. PubMed DOI
Haghighatpanah M., Mozzafari Nejad A.S., Mojtahedi A., Amirmozafari N., Zeighami H. Detection of extended spectrum β-lactamase (ESBL) and plasmid-borne blaCTX-M and blaTEM genes among clinical strains of Escherichia coli isolated from patients in the north of Iran. J. Glob. Antimicrob. Resist. 2016;7:110–113. doi: 10.1016/j.jgar.2016.08.005. PubMed DOI
Sun L., Xu J., He F. Draft genome sequence of an NDM-5, CTX-M-15 and OXA-1 co-producing Escherichia coli ST167 clinical strain isolated from a urine sample. J. Glob. Antimicrob. Resist. 2018;14:284–286. doi: 10.1016/j.jgar.2018.08.005. PubMed DOI
Khatoon Z., McTiernam C.H.D., Suuronen E.J., Mah T.F., Alarcon E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4:1–36. doi: 10.1016/j.heliyon.2018.e01067. PubMed DOI PMC