Differences in crystallization of two LinB variants from Sphingobium japonicum UT26
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23519805
PubMed Central
PMC3606575
DOI
10.1107/s1744309113002467
PII: S1744309113002467
Knihovny.cz E-zdroje
- Klíčová slova
- LinB, Sphingobium japonicum, haloalkane dehalogenase, macroseeding,
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- biodegradace MeSH
- bromované uhlovodíky chemie metabolismus MeSH
- Escherichia coli chemie genetika MeSH
- ethylendibromid chemie metabolismus MeSH
- hydrolasy chemie genetika metabolismus MeSH
- izoenzymy chemie genetika metabolismus MeSH
- krystalizace MeSH
- krystalografie rentgenová MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- Sphingomonadaceae chemie enzymologie genetika MeSH
- substrátová specifita MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bromované uhlovodíky MeSH
- butyl bromide MeSH Prohlížeč
- ethylendibromid MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- izoenzymy MeSH
- rekombinantní proteiny MeSH
Haloalkane dehalogenases are microbial enzymes that convert a broad range of halogenated aliphatic compounds to their corresponding alcohols by the hydrolytic mechanism. These enzymes play an important role in the biodegradation of various environmental pollutants. Haloalkane dehalogenase LinB isolated from a soil bacterium Sphingobium japonicum UT26 has a relatively broad substrate specificity and can be applied in bioremediation and biosensing of environmental pollutants. The LinB variants presented here, LinB32 and LinB70, were constructed with the goal of studying the effect of mutations on enzyme functionality. In the case of LinB32 (L117W), the introduced mutation leads to blocking of the main tunnel connecting the deeply buried active site with the surrounding solvent. The other variant, LinB70 (L44I, H107Q), has the second halide-binding site in a position analogous to that in the related haloalkane dehalogenase DbeA from Bradyrhizobium elkanii USDA94. Both LinB variants were successfully crystallized and full data sets were collected for native enzymes as well as their complexes with the substrates 1,2-dibromoethane (LinB32) and 1-bromobutane (LinB70) to resolutions ranging from 1.6 to 2.8 Å. The two mutants crystallize differently from each other, which suggests that the mutations, although deep inside the molecule, can still affect the protein crystallizability.
Zobrazit více v PubMed
Bergfors, T. M. (1999). Protein Crystallization International University Line: La Jolla, CA ,USA.
Bidmanova, S., Chaloupkova, R., Damborsky, J. & Prokop, Z. (2010). Anal. Bioanal. Chem. 398, 1891–1898. PubMed
Biedermannova, L., Prokop, Z., Gora, A., Chovancova, E., Kovacs, M., Damborsky, J. & Wade, R. C. (2012). Biol. Chem. 287, 29062–29074. PubMed PMC
Campbell, D. W., Müller, C. & Reardon, K. F. (2006). Biotechnol. Lett. 28, 883–887. PubMed
Chaloupkova, R., Prudnikova, T., Rezacova, P., Prokop, Z., Mozga, T., Koudelakova, T., Daniel, L., Brezovsky, J., Sato, Y., Kuty, M., Nagata, Y., Kuta-Smatanova, I. & Damborsky, J. (2013). In preparation.
Chaloupková, R., Sýkorová, J., Prokop, Z., Jesenská, A., Monincová, M., Pavlová, M., Tsuda, M., Nagata, Y. & Damborský, J. (2003). J. Biol. Chem. 278, 52622–52628. PubMed
Diederichs, K. & Karplus, P. A. (1997). Nature Struct. Biol. 4, 269–275. PubMed
Janssen, D. B., Dinkla, I. J. T., Poelarends, G. J. & Terpstra, P. (2005). Environ. Microbiol. 7, 1868–1882. PubMed
Kabsch, W. (2010). Acta Cryst. D66, 125–132. PubMed PMC
Koudelakova, T., Chovancova, E., Brezovsky, J., Monincova, M., Fortova, A., Jarkovsky, J. & Damborsky, J. (2011). Biochem. J. 435, 345–354. PubMed
Krug, M., Weiss, M. S., Heinemann, U. & Mueller, U. (2012). J. Appl. Cryst. 45, 568–572.
Los, G. V. & Wood, K. (2007). Methods Mol. Biol. 356, 195–208. PubMed
Marek, J., Vévodová, J., Smatanová, I. K., Nagata, Y., Svensson, L. A., Newman, J., Takagi, M. & Damborský, J. (2000). Biochemistry, 39, 14082–14086. PubMed
Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497. PubMed
Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859–866. PubMed
Mueller, U., Darowski, N., Fuchs, M. R., Förster, R., Hellmig, M., Paithankar, K. S., Pühringer, S., Steffien, M., Zocher, G. & Weiss, M. S. (2012). J. Synchrotron Rad. 19, 442–449. PubMed PMC
Nagata, Y., Miyauchi, K., Damborsky, J., Manova, K., Ansorgova, A. & Takagi, M. (1997). Appl. Environ. Microbiol. 63, 3707–3710. PubMed PMC
Ohana, R. F., Encell, L. P., Zhao, K., Simpson, D., Slater, M. R., Urh, M. & Wood, K. V. (2009). Protein Expr. Purif. 68, 110–120. PubMed
Prokop, Z., Sato, Y., Brezovsky, J., Mozga, T., Chaloupkova, R., Koudelakova, T., Jerabek, P., Stepankova, V., Natsume, R., van Leeuwen, J., Janssen, D., Florian, J., Nagata, Y., Senda, T. & Damborsky, J. (2010). Angew. Chem. Int. Ed. 49, 6111–6115. PubMed
Smatanová, I., Nagata, Y., Svensson, L. A., Takagi, M. & Marek, J. (1999). Acta Cryst. D55, 1231–1233. PubMed
Stucki, G. & Thueer, M. (1995). Environ. Sci. Technol. 29, 2339–2345. PubMed
Weiss, M. S. & Hilgenfeld, R. (1997). J. Appl. Cryst. 30, 203–205.
Weiss, M. S., Metzner, H. J. & Hilgenfeld, R. (1998). FEBS Lett. 243, 291–296. PubMed
Westerbeek, A., Szymański, W., Feringa, B. L. & Janssen, D. B. (2011). ACS Catal. 1, 1654–1660.
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. PubMed
Structural Analysis of the Ancestral Haloalkane Dehalogenase AncLinB-DmbA