Persistent organic pollutants are bioaccumulative and toxic to living organisms. Persistent substances may increase oxidative stress and start inflammatory processes, which are the major factors in the pathogenesis of obesityrelated diseases. A clear link was found between mitochondrial dysfunction and the type 2 diabetes mellitus. A mutation in mitochondrial DNA β-cells of pancreas leads to the worsening of insulin secretion, cell apoptosis and subsequent reduction of β-cells.
- MeSH
- apoptóza MeSH
- beta-buňky patologie MeSH
- bromované uhlovodíky metabolismus MeSH
- chlorované uhlovodíky metabolismus MeSH
- diabetes mellitus 2. typu etiologie MeSH
- endokrinní disruptory * MeSH
- látky znečišťující životní prostředí škodlivé účinky MeSH
- lidé MeSH
- metaanalýza jako téma MeSH
- metabolický syndrom etiologie MeSH
- mitochondriální DNA MeSH
- mitochondrie * patologie MeSH
- mutace MeSH
- obezita etiologie MeSH
- oxidační stres MeSH
- polychlorované bifenyly * metabolismus MeSH
- tuková tkáň MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Brominated flame retardants (BFRs) have been routinely used as additives in a number of consumer products for several decades in order to reduce the risk of fire accidents. Concerns about the massive use of these substances have increased due to their possible toxicity, endocrine disrupting properties and occurrence in almost all the environmental compartments, including humans and wildlife organisms. Several conventional BFRs (e.g. polybrominated diphenylethers (PBDE)) have been included in the list of Persistent Organic Pollutants and their use has been restricted because of their established toxicity and environmental persistence. Over the past few years, these compounds have been replaced with "new" BFRs (NBFRs). Despite the fact that NBFRs are different chemical molecules than traditional BFRs, most of physical-chemical properties (e.g. aromatic moiety, halogen substitution, lipophilic character) are common to both groups; therefore, their fate in the environment is potentially similar to the banned BFRs. Therefore, this article has been compiled to summarize the published scientific data regarding the biodegradability of the most widely used NBFRs, a key factor in their potential persistency in the environment, and their ecotoxicological effects on humans and test organisms. The data reviewed here document that the mechanisms through NBFRs exibit their ecotoxicity and the processes leading to their biotransformation in the environment are still poorly understood. Thus emphasis is placed on the need for further research in these areas is therefore emphasized, in order to avoid the massive use of further potentially harmful and recalcitrant substances of anthropogenic origin.
- MeSH
- biodegradace MeSH
- bromované uhlovodíky metabolismus toxicita MeSH
- hodnocení rizik MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- retardanty hoření metabolismus toxicita MeSH
- vystavení vlivu životního prostředí * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Haloalkane dehalogenases are microbial enzymes that convert a broad range of halogenated aliphatic compounds to their corresponding alcohols by the hydrolytic mechanism. These enzymes play an important role in the biodegradation of various environmental pollutants. Haloalkane dehalogenase LinB isolated from a soil bacterium Sphingobium japonicum UT26 has a relatively broad substrate specificity and can be applied in bioremediation and biosensing of environmental pollutants. The LinB variants presented here, LinB32 and LinB70, were constructed with the goal of studying the effect of mutations on enzyme functionality. In the case of LinB32 (L117W), the introduced mutation leads to blocking of the main tunnel connecting the deeply buried active site with the surrounding solvent. The other variant, LinB70 (L44I, H107Q), has the second halide-binding site in a position analogous to that in the related haloalkane dehalogenase DbeA from Bradyrhizobium elkanii USDA94. Both LinB variants were successfully crystallized and full data sets were collected for native enzymes as well as their complexes with the substrates 1,2-dibromoethane (LinB32) and 1-bromobutane (LinB70) to resolutions ranging from 1.6 to 2.8 Å. The two mutants crystallize differently from each other, which suggests that the mutations, although deep inside the molecule, can still affect the protein crystallizability.
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- biodegradace MeSH
- bromované uhlovodíky chemie metabolismus MeSH
- Escherichia coli chemie genetika MeSH
- ethylendibromid chemie metabolismus MeSH
- hydrolasy chemie genetika metabolismus MeSH
- izoenzymy chemie genetika metabolismus MeSH
- krystalizace MeSH
- krystalografie rentgenová MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- Sphingomonadaceae chemie enzymologie genetika MeSH
- substrátová specifita MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH