Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26161475
PubMed Central
PMC4498600
DOI
10.1371/journal.pone.0132571
PII: PONE-D-15-05245
Knihovny.cz E-zdroje
- MeSH
- B-lymfocyty metabolismus mikrobiologie MeSH
- bakteriální geny MeSH
- biologický transport MeSH
- buněčné linie MeSH
- Francisella tularensis fyziologie MeSH
- interakce hostitele a patogenu MeSH
- membránové mikrodomény metabolismus MeSH
- mikrobiální viabilita MeSH
- myši inbrední BALB C MeSH
- receptory antigenů B-buněk metabolismus MeSH
- receptory IgG metabolismus MeSH
- receptory komplementu metabolismus MeSH
- sekvenční delece MeSH
- tularemie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory antigenů B-buněk MeSH
- receptory IgG MeSH
- receptory komplementu MeSH
Francisella tularensis, the etiological agent of tularemia, is an intracellular pathogen that dominantly infects and proliferates inside phagocytic cells but can be seen also in non-phagocytic cells, including B cells. Although protective immunity is known to be almost exclusively associated with the type 1 pathway of cellular immunity, a significant role of B cells in immune responses already has been demonstrated. Whether their role is associated with antibody-dependent or antibody-independent B cell functions is not yet fully understood. The character of early events during B cell-pathogen interaction may determine the type of B cell response regulating the induction of adaptive immunity. We used fluorescence microscopy and flow cytometry to identify the basic requirements for the entry of F. tularensis into B cells within in vivo and in vitro infection models. Here, we present data showing that Francisella tularensis subsp. holarctica strain LVS significantly infects individual subsets of murine peritoneal B cells early after infection. Depending on a given B cell subset, uptake of Francisella into B cells is mediated by B cell receptors (BCRs) with or without complement receptor CR1/2. However, F. tularensis strain FSC200 ΔiglC and ΔftdsbA deletion mutants are defective in the ability to enter B cells. Once internalized into B cells, F. tularensis LVS intracellular trafficking occurs along the endosomal pathway, albeit without significant multiplication. The results strongly suggest that BCRs alone within the B-1a subset can ensure the internalization process while the BCRs on B-1b and B-2 cells need co-signaling from the co receptor containing CR1/2 to initiate F. tularensis engulfment. In this case, fluidity of the surface cell membrane is a prerequisite for the bacteria's internalization. The results substantially underline the functional heterogeneity of B cell subsets in relation to F. tularensis.
Zobrazit více v PubMed
Detilleux PG, Deyoe BL, Cheville NF. Penetration and intracellular growth of Brucella abortus in nonphagocytic cells in vitro. Infect Immun. 1990;58: 2320–2328. PubMed PMC
Pizarro-Cerdá J, Méresse S, Parton RG, van der Goot G, Sola-Landa A, Lopez-Goñi I, et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun. 1998;66: 5711–5724. PubMed PMC
Pizarro-Cerdá J, Moreno E, Gorvel JP. Invasion and intracellular trafficking of Brucella abortus in nonphagocytic cells. Microbes Infect Inst Pasteur. 2000;2: 829–835. PubMed
Vitry M-A, Hanot Mambres D, Deghelt M, Hack K, Machelart A, Lhomme F, et al. Brucella melitensis Invades Murine Erythrocytes during Infection. Infect Immun. 2014;82: 3927–3938. 10.1128/IAI.01779-14 PubMed DOI PMC
Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, et al. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. MicrobiologyOpen. 2012;1: 243–258. 10.1002/mbo3.28 PubMed DOI PMC
Veiga E, Cossart P. The role of clathrin-dependent endocytosis in bacterial internalization. Trends Cell Biol. 2006;16: 499–504. 10.1016/j.tcb.2006.08.005 PubMed DOI PMC
Bonazzi M, Lecuit M, Cossart P. Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis. Cell Microbiol. 2009;11: 693–702. 10.1111/j.1462-5822.2009.01293.x PubMed DOI
Mostowy S, Cossart P. Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game. Cell Motil Cytoskeleton. 2009;66: 816–823. 10.1002/cm.20353 PubMed DOI
Pizarro-Cerdá J, Kühbacher A, Cossart P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med. 2012;2 10.1101/cshperspect.a010009 PubMed DOI PMC
Santic M, Molmeret M, Klose KE, Abu Kwaik Y. Francisella tularensis travels a novel, twisted road within macrophages. Trends Microbiol. 2006;14: 37–44. 10.1016/j.tim.2005.11.008 PubMed DOI
Santic M, Al-Khodor S, Abu Kwaik Y. Cell biology and molecular ecology of Francisella tularensis . Cell Microbiol. 2010;12: 129–139. 10.1111/j.1462-5822.2009.01400.x PubMed DOI
Moreau GB, Mann BJ. Adherence and uptake of Francisella into host cells. Virulence. 2013;4: 826–832. 10.4161/viru.25629 PubMed DOI PMC
Forestal CA, Malik M, Catlett SV, Savitt AG, Benach JL, Sellati TJ, et al. Francisella tularensis has a significant extracellular phase in infected mice. J Infect Dis. 2007;196: 134–137. 10.1086/518611 PubMed DOI
Bolger CE, Forestal CA, Italo JK, Benach JL, Furie MB. The live vaccine strain of Francisella tularensis replicates in human and murine macrophages but induces only the human cells to secrete proinflammatory cytokines. J Leukoc Biol. 2005;77: 893–897. 10.1189/jlb.1104637 PubMed DOI
Sjöstedt A. Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect Inst Pasteur. 2006;8: 561–567. 10.1016/j.micinf.2005.08.001 PubMed DOI
Clemens DL, Horwitz MA. Uptake and intracellular fate of Francisella tularensis in human macrophages. Ann N Y Acad Sci. 2007;1105: 160–186. 10.1196/annals.1409.001 PubMed DOI
Ramond E, Gesbert G, Barel M, Charbit A. Proteins involved in Francisella tularensis survival and replication inside macrophages. Future Microbiol. 2012;7: 1255–1268. 10.2217/fmb.12.103 PubMed DOI
Hall JD, Woolard MD, Gunn BM, Craven RR, Taft-Benz S, Frelinger JA, et al. Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun. 2008;76: 5843–5852. 10.1128/IAI.01176-08 PubMed DOI PMC
Law HT, Lin AE-J, Kim Y, Quach B, Nano FE, Guttman JA. Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci Rep. 2011;1: 192 10.1038/srep00192 PubMed DOI PMC
Meibom KL, Barel M, Charbit A. Loops and networks in control of Francisella tularensis virulence. Future Microbiol. 2009;4: 713–729. 10.2217/fmb.09.37 PubMed DOI
Horzempa J, O’Dee DM, Stolz DB, Franks JM, Clay D, Nau GJ. Invasion of erythrocytes by Francisella tularensis . J Infect Dis. 2011;204: 51–59. 10.1093/infdis/jir221 PubMed DOI PMC
Malik M, Bakshi CS, Sahay B, Shah A, Lotz SA, Sellati TJ. Toll-like receptor 2 is required for control of pulmonary infection with Francisella tularensis . Infect Immun. 2006;74: 3657–3662. 10.1128/IAI.02030-05 PubMed DOI PMC
Abplanalp AL, Morris IR, Parida BK, Teale JM, Berton MT. TLR-dependent control of Francisella tularensis infection and host inflammatory responses. PloS One. 2009;4: e7920 10.1371/journal.pone.0007920 PubMed DOI PMC
Chakraborty S, Monfett M, Maier TM, Benach JL, Frank DW, Thanassi DG. Type IV pili in Francisella tularensis: roles of pilF and pilT in fiber assembly, host cell adherence, and virulence. Infect Immun. 2008;76: 2852–2861. 10.1128/IAI.01726-07 PubMed DOI PMC
Melillo A, Sledjeski DD, Lipski S, Wooten RM, Basrur V, Lafontaine ER. Identification of a Francisella tularensis LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol Lett. 2006;263: 102–108. 10.1111/j.1574-6968.2006.00413.x PubMed DOI
Barel M, Hovanessian AG, Meibom K, Briand J-P, Dupuis M, Charbit A. A novel receptor—ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiol. 2008;8: 145 10.1186/1471-2180-8-145 PubMed DOI PMC
Lindemann SR, McLendon MK, Apicella MA, Jones BD. An In Vitro Model System Used To Study Adherence and Invasion of Francisella tularensis Live Vaccine Strain in Nonphagocytic Cells. Infect Immun. 2007;75: 3178–3182. 10.1128/IAI.01811-06 PubMed DOI PMC
Craven RR, Hall JD, Fuller JR, Taft-Benz S, Kawula TH. Francisella tularensis invasion of lung epithelial cells. Infect Immun. 2008;76: 2833–2842. 10.1128/IAI.00043-08 PubMed DOI PMC
Schulert GS, Allen L-AH. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J Leukoc Biol. 2006;80: 563–571. 10.1189/jlb.0306219 PubMed DOI PMC
Geier H, Celli J. Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis . Infect Immun. 2011;79: 2204–2214. 10.1128/IAI.01382-10 PubMed DOI PMC
Krocova Z, Härtlova A, Souckova D, Zivna L, Kroca M, Rudolf E, et al. Interaction of B cells with intracellular pathogen Francisella tularensis . Microb Pathog. 2008;45: 79–85. 10.1016/j.micpath.2008.01.010 PubMed DOI
Plzakova L, Kubelkova K, Krocova Z, Zarybnicka L, Sinkorova Z, Macela A. B cell subsets are activated and produce cytokines during early phases of Francisella tularensis LVS infection. Microb Pathog. 2014;75C: 49–58. 10.1016/j.micpath.2014.08.009 PubMed DOI
Bratescu A, Mayer EP, Teodorescu M. Binding of bacteria from the genus Brucella to human B lymphocytes. Infect Immun. 1981;31: 816–821. PubMed PMC
Teodorescu M, Mayer EP. Binding of bacteria to lymphocyte subpopulations. Adv Immunol. 1982;33: 307–351. PubMed
Lombardi G, Del Gallo F, Vismara D, Piccolella E, Colizzi V. Immunology of tuberculosis: new directions in research. Ric Clin Lab. 1987;17: 1–15. PubMed
Bard JA, Levitt D. Binding, ingestion, and multiplication of Chlamydia trachomatis (L2 serovar) in human leukocyte cell lines. Infect Immun. 1985;50: 935–937. PubMed PMC
Goenka R, Guirnalda PD, Black SJ, Baldwin CL. B Lymphocytes provide an infection niche for intracellular bacterium Brucella abortus . J Infect Dis. 2012;206: 91–98. 10.1093/infdis/jis310 PubMed DOI PMC
Verjans GM, Ringrose JH, van Alphen L, Feltkamp TE, Kusters JG. Entrance and survival of Salmonella typhimurium and Yersinia enterocolitica within human B- and T-cell lines. Infect Immun. 1994;62: 2229–2235. PubMed PMC
Rosales-Reyes R, Pérez-López A, Sánchez-Gómez C, Hernández-Mote RR, Castro-Eguiluz D, Ortiz-Navarrete V, et al. Salmonella infects B cells by macropinocytosis and formation of spacious phagosomes but does not induce pyroptosis in favor of its survival. Microb Pathog. 2012;52: 367–374. 10.1016/j.micpath.2012.03.007 PubMed DOI
Souwer Y, Griekspoor A, Jorritsma T, de Wit J, Janssen H, Neefjes J, et al. B cell receptor-mediated internalization of Salmonella: a novel pathway for autonomous B cell activation and antibody production. J Immunol Baltim Md 1950. 2009;182: 7473–7481. 10.4049/jimmunol.0802831 PubMed DOI
Souwer Y, Griekspoor A, de Wit J, Martinoli C, Zagato E, Janssen H, et al. Selective infection of antigen-specific B lymphocytes by Salmonella mediates bacterial survival and systemic spreading of infection. PloS One. 2012;7: e50667 10.1371/journal.pone.0050667 PubMed DOI PMC
Straskova A, Pavkova I, Link M, Forslund A-L, Kuoppa K, Noppa L, et al. Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J Proteome Res. 2009;8: 5336–5346. 10.1021/pr900570b PubMed DOI
Golovliov I, Sjöstedt A, Mokrievich A, Pavlov V. A method for allelic replacement in Francisella tularensis . FEMS Microbiol Lett. 2003;222: 273–280. PubMed
Santic M, Molmeret M, Klose KE, Jones S, Kwaik YA. The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 2005;7: 969–979. 10.1111/j.1462-5822.2005.00526.x PubMed DOI
Qin A, Scott DW, Thompson JA, Mann BJ. Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect Immun. 2009;77: 152–161. 10.1128/IAI.01113-08 PubMed DOI PMC
Pike LJ. The challenge of lipid rafts. J Lipid Res. 2009;50: S323–S328. 10.1194/jlr.R800040-JLR200 PubMed DOI PMC
Batista FD, Iber D, Neuberger MS. B cells acquire antigen from target cells after synapse formation. Nature. 2001;411: 489–494. 10.1038/35078099 PubMed DOI
Batista FD, Harwood NE. The who, how and where of antigen presentation to B cells. Nat Rev Immunol. 2009;9: 15–27. 10.1038/nri2454 PubMed DOI
Castro-Eguiluz D, Pelayo R, Rosales-Garcia V, Rosales-Reyes R, Alpuche-Aranda C, Ortiz-Navarrete V. B cell precursors are targets for Salmonella infection. Microb Pathog. 2009;47: 52–56. 10.1016/j.micpath.2009.04.005 PubMed DOI
Menon A, Shroyer ML, Wampler JL, Chawan CB, Bhunia AK. In vitro study of Listeria monocytogenes infection to murine primary and human transformed B cells. Comp Immunol Microbiol Infect Dis. 2003;26: 157–174. PubMed
García-Pérez BE, De la Cruz-López JJ, Castañeda-Sánchez JI, Muñóz-Duarte AR, Hernández-Pérez AD, Villegas-Castrejón H, et al. Macropinocytosis is responsible for the uptake of pathogenic and non-pathogenic mycobacteria by B lymphocytes (Raji cells). BMC Microbiol. 2012;12: 246 10.1186/1471-2180-12-246 PubMed DOI PMC
Carroll MC, Isenman DE. Regulation of humoral immunity by complement. Immunity. 2012;37: 199–207. 10.1016/j.immuni.2012.08.002 PubMed DOI PMC
Van Noesel CJ, Lankester AC, van Lier RA. Dual antigen recognition by B cells. Immunol Today. 1993;14: 8–11. PubMed
Heyman B. A third way to induce crosslinking of membrane immunoglobulin and CR2? Immunol Today. 1993;14: 515 10.1016/0167-5699(93)90269-Q PubMed DOI
Gimpl G, Gehring-Burger K. Cholesterol Reporter Molecules. Biosci Rep. 2007;27: 335–358. PubMed
Schmidt C, Kim D, Ippolito GC, Naqvi HR, Probst L, Mathur S, et al. Signalling of the BCR is regulated by a lipid rafts-localised transcription factor, Bright. EMBO J. 2009;28: 711–724. 10.1038/emboj.2009.20 PubMed DOI PMC
Zuidscherwoude M, de Winde CM, Cambi A, van Spriel AB. Microdomains in the membrane landscape shape antigen-presenting cell function. J Leukoc Biol. 2014;95: 251–263. 10.1189/jlb.0813440 PubMed DOI
Bröms JE, Meyer L, Sun K, Lavander M, Sjöstedt A. Unique substrates secreted by the type VI secretion system of Francisella tularensis during intramacrophage infection. PloS One. 2012;7: e50473 10.1371/journal.pone.0050473 PubMed DOI PMC
Law HT, Sriram A, Fevang C, Nix EB, Nano FE, Guttman JA. IglC and PdpA are important for promoting Francisella invasion and intracellular growth in epithelial cells. PloS One. 2014;9: e104881 10.1371/journal.pone.0104881 PubMed DOI PMC
Qin A, Scott DW, Rabideau MM, Moore EA, Mann BJ. Requirement of the CXXC motif of novel Francisella infectivity potentiator protein B FipB, and FipA in virulence of F. tularensis subsp. tularensis . PloS One. 2011;6: e24611 10.1371/journal.pone.0024611 PubMed DOI PMC
Qin A, Zhang Y, Clark ME, Rabideau MM, Millan Barea LR, Mann BJ. FipB, an essential virulence factor of Francisella tularensis subspecies tularensis, has dual roles in disulfide bond formation. J Bacteriol. 2014; 10.1128/JB.01359-13 PubMed DOI PMC
Ren G, Champion MM, Huntley JF. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol Microbiol. 2014;94: 926–944. 10.1111/mmi.12808 PubMed DOI PMC
Almeida SR, Aroeira LS, Frymuller E, Dias MA, Bogsan CS, Lopes JD, et al. Mouse B-1 cell-derived mononuclear phagocyte, a novel cellular component of acute non-specific inflammatory exudate. Int Immunol. 2001;13: 1193–1201. PubMed
Parra D, Rieger AM, Li J, Zhang Y-A, Randall LM, Hunter CA, et al. Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. J Leukoc Biol. 2012;91: 525–536. 10.1189/jlb.0711372 PubMed DOI PMC
Sunyer JO. Evolutionary and functional relationships of B cells from fish and mammals: insights into their novel roles in phagocytosis and presentation of particulate antigen. Infect Disord Drug Targets. 2012;12: 200–212. PubMed PMC
Why Does SARS-CoV-2 Infection Induce Autoantibody Production?
Early infection-induced natural antibody response
Innate Immune Recognition: An Issue More Complex Than Expected