Why Does SARS-CoV-2 Infection Induce Autoantibody Production?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MV-83962-1/OBVV-2020
Ministry of Interior of the Czech Republic
Long-term organization development plan 238 Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health 239 Sciences, University of Defence.
Ministry of Defence of the Czech Republic
PubMed
33809954
PubMed Central
PMC8004127
DOI
10.3390/pathogens10030380
PII: pathogens10030380
Knihovny.cz E-zdroje
- Klíčová slova
- ACE2 signaling, COVID-19, SARS-CoV-2, autoantibodies, innate immune recognition,
- Publikační typ
- časopisecké články MeSH
SARS-CoV-2 infection induces the production of autoantibodies, which is significantly associated with complications during hospitalization and a more severe prognosis in COVID-19 patients. Such a response of the patient's immune system may reflect (1) the dysregulation of the immune response or (2) it may be an attempt to regulate itself in situations where the non-infectious self poses a greater threat than the infectious non-self. Of significance may be the primary virus-host cell interaction where the surface-bound ACE2 ectoenzyme plays a critical role. Here, we present a brief analysis of recent findings concerning the immune recognition of SARS-CoV-2, which, we believe, favors the second possibility as the underlying reason for the production of autoantibodies during COVID-19.
Zobrazit více v PubMed
Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., Chen H., Ding X., Zhao H., Zhang H., et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N. Engl. J. Med. 2020;382:e38. doi: 10.1056/NEJMc2007575. PubMed DOI PMC
Zuo Y., Estes S.K., Gandhi A.A., Yalavarthi S., Ali R.A., Shi H., Sule G., Gockman K., Madison J.A., Zuo M., et al. Prothrombotic Antiphospholipid Antibodies in COVID-19. medRxiv. 2020 doi: 10.1101/2020.06.15.20131607. DOI
Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., et al. Autoantibodies against Type I IFNs in Patients with Life-Threatening COVID-19. Science. 2020;370:6515. doi: 10.1126/science.abd4585. PubMed DOI PMC
Zhou Y., Han T., Chen J., Hou C., Hua L., He S., Guo Y., Zhang S., Wang Y., Yuan J., et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin. Transl Sci. 2020;13:1077–1086. doi: 10.1111/cts.12805. PubMed DOI PMC
Wang E.Y., Mao T., Klein J., Dai Y., Huck J.D., Liu F., Zheng N.S., Zhou T., Israelow B., Wong P., et al. Diverse Functional Autoantibodies in Patients with COVID-19. medRxiv. 2020 doi: 10.1101/2020.12.10.20247205. PubMed DOI
Chang S.E., Feng A., Meng W., Apostolidis S.A., Mack E., Artandi M., Barman L., Bennett K., Chakraborty S., Chang I., et al. New-Onset IgG Autoantibodies in Hospitalized Patients with COVID-19. medRxiv. 2021 doi: 10.1101/2021.01.27.21250559. PubMed DOI PMC
Pascolini S., Vannini A., Deleonardi G., Ciordinik M., Sensoli A., Carletti I., Veronesi L., Ricci C., Pronesti A., Mazzanti L., et al. COVID-19 and Immunological Dysregulation: Can Autoantibodies Be Useful? Clin. Transl. Sci. 2020 doi: 10.1111/cts.12908. PubMed DOI PMC
Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020;20:363–374. doi: 10.1038/s41577-020-0311-8. PubMed DOI PMC
Matz H., Munir D., Logue J., Dooley H. The Immunoglobulins of Cartilaginous Fishes. Dev. Comp. Immunol. 2021;115:103873. doi: 10.1016/j.dci.2020.103873. PubMed DOI PMC
Tyler A. Agglutination of Sea-Urchin Eggs by Means of a Substance Extracted from the Eggs. Proc. Natl. Acad. Sci. USA. 1940;26:249–256. doi: 10.1073/pnas.26.4.249. PubMed DOI PMC
Tyler A. On Natural Auto-Antibodies as Evidenced by Anti-Venin in Serum and Liver Extract of the Gila Monster. Proc. Natl. Acad. Sci. USA. 1946;32:195–201. doi: 10.1073/pnas.32.7.195. PubMed DOI PMC
Boyden S. Cellular recognition of foreign matter. Int. Rev. Exp. Pathol. 1963;2:311–356. PubMed
Boyden S. Natural Antibodies and the Immune Response. Adv. Immunol. 1966;5:1–28. doi: 10.1016/s0065-2776(08)60271-0. PubMed DOI
Asherson G.L., Rose M.E. Autoantibody Production in Rabbits III. The Effect of Infection with Eimeria Stiedae and Its Relation to Natural Antibody. Immunology. 1963;6:207–216. PubMed PMC
Asherson G.L., Holborow E.J. Autoantibody Production in Rabbits VII. Autoantibodies to Gut Produced by the Injection of Bacteria. Immunology. 1966;10:161–167. PubMed PMC
Hammarström S., Perlmann P., Gustafsson B.E., Lagercrantz R. Autoantibodies to Colon in Germfree Rats Monocontaminated with Clostridium Difficile. J. Exp. Med. 1969;129:747–756. doi: 10.1084/jem.129.4.747. PubMed DOI PMC
Kubelkova K., Hudcovic T., Kozakova H., Pejchal J., Macela A. Early Infection-Induced Natural Antibody Response. Sci. Rep. 2021;11:1541. doi: 10.1038/s41598-021-81083-0. PubMed DOI PMC
Havlasová J., Hernychová L., Halada P., Pellantová V., Krejsek J., Stulík J., Macela A., Jungblut P.R., Larsson P., Forsman M. Mapping of Immunoreactive Antigens of Francisella Tularensis Live Vaccine Strain. Proteomics. 2002;2:857–867. doi: 10.1002/1615-9861(200207)2:7<857::AID-PROT857>3.0.CO;2-L. PubMed DOI
Havlasová J., Hernychová L., Brychta M., Hubálek M., Lenco J., Larsson P., Lundqvist M., Forsman M., Krocová Z., Stulík J., et al. Proteomic Analysis of Anti-Francisella Tularensis LVS Antibody Response in Murine Model of Tularemia. Proteomics. 2005;5:2090–2103. doi: 10.1002/pmic.200401123. PubMed DOI
Eyles J.E., Unal B., Hartley M.G., Newstead S.L., Flick-Smith H., Prior J.L., Oyston P.C., Randall A., Mu Y., Hirst S., et al. Immunodominant Francisella Tularensis Antigens Identified Using Proteome Microarray. Proteomics. 2007;7:2172–2183. doi: 10.1002/pmic.200600985. PubMed DOI
Janovská S., Pávková I., Reichelová M., Hubáleka M., Stulík J., Macela A. Proteomic Analysis of Antibody Response in a Case of Laboratory-Acquired Infection with Francisella Tularensis Subsp. Tularensis. Folia Microbiol. 2007;52:194–198. doi: 10.1007/BF02932159. PubMed DOI
Janovská S., Pávková I., Hubálek M., Lenco J., Macela A., Stulík J. Identification of Immunoreactive Antigens in Membrane Proteins Enriched Fraction from Francisella Tularensis LVS. Immunol. Lett. 2007;108:151–159. doi: 10.1016/j.imlet.2006.12.004. PubMed DOI
Baumgarth N., Waffarn E.E., Nguyen T.T.T. Natural and Induced B-1 Cell Immunity to Infections Raises Questions of Nature versus Nurture. Ann. N. Y. Acad. Sci. 2015;1362:188–199. doi: 10.1111/nyas.12804. PubMed DOI PMC
Schwartz J.T., Barker J.H., Long M.E., Kaufman J., McCracken J., Allen L.-A.H. Natural IgM Mediates Complement-Dependent Uptake of Francisella Tularensis by Human Neutrophils via CR1 and CR3 in Nonimmune Serum. J. Immunol. 2012;189:3064–3077. doi: 10.4049/jimmunol.1200816. PubMed DOI PMC
Plzakova L., Krocova Z., Kubelkova K., Macela A. Entry of Francisella Tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors. PLoS ONE. 2015;10:e0132571. doi: 10.1371/journal.pone.0132571. PubMed DOI PMC
Geier H., Celli J. Phagocytic Receptors Dictate Phagosomal Escape and Intracellular Proliferation of Francisella Tularensis. Infect. Immun. 2011;79:2204–2214. doi: 10.1128/IAI.01382-10. PubMed DOI PMC
Netea M.G., Quintin J., van der Meer J.W. Trained Immunity: A Memory for Innate Host Defense. Cell Host Microbe. 2011;9:355–361. doi: 10.1016/j.chom.2011.04.006. PubMed DOI
Netea M.G., Joosten L.A., Latz E., Mills K.H., Natoli G., Stunnenberg H.G., O’Neill L.A., Xavier R.J. Trained Immunity: A Program of Innate Immune Memory in Health and Disease. Science. 2016;352:6284. doi: 10.1126/science.aaf1098. PubMed DOI PMC
Netea M.G., Domínguez-Andrés J., Barreiro L.B., Chavakis T., Divangahi M., Fuchs E., Joosten L.A.B., van der Meer J.W., Mhlanga M.M., Mulder W.J.M., et al. Defining Trained Immunity and Its Role in Health and Disease. Nat. Rev. Immunol. 2020;20:375–388. doi: 10.1038/s41577-020-0285-6. PubMed DOI PMC
Griffin D.O., Holodick N.E., Rothstein T.L. Human B1 Cells in Umbilical Cord and Adult Peripheral Blood Express the Novel Phenotype CD20+ CD27+ CD43+ CD70- J. Exp. Med. 2011;208:67–80. doi: 10.1084/jem.20101499. Erratum in 2011, 208, 871; Erratum in 2011, 208, 409; Erratum in 2011, 208, 67. PubMed DOI PMC
Griffin D.O., Rothstein T.L. Human b1 Cell Frequency: Isolation and Analysis of Human b1 Cells. Front. Immunol. 2012;3:122. doi: 10.3389/fimmu.2012.00122. PubMed DOI PMC
Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC
Bourgonje A.R., Abdulle A.E., Timens W., Hillebrands J.L., Navis G.J., Gordijn S.J., Bolling M.C., Dijkstra G., Voors A.A., Osterhaus A.D., et al. Angiotensin-Converting Enzyme 2 (ACE2), SARS-CoV-2 and the Pathophysiology of Coronavirus Disease 2019 (COVID-19) J. Pathol. 2020;251:228–248. doi: 10.1002/path.5471. PubMed DOI PMC
Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., Lu G., Qiao C., Hu Y., Yuen K.Y., et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020;181:894–904.e9. doi: 10.1016/j.cell.2020.03.045. PubMed DOI PMC
Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.-C., Turner A.J., Raizada M.K., Grant M.B., Oudit G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res. 2020;126 doi: 10.1161/CIRCRESAHA.120.317015. PubMed DOI PMC
Mahmudpour M., Roozbeh J., Keshavarz M., Farrokhi S., Nabipour I. COVID-19 Cytokine Storm: The Anger of Inflammation. Cytokine. 2020;133:155151. doi: 10.1016/j.cyto.2020.155151. PubMed DOI PMC
Ragab D., Salah Eldin H., Taeimah M., Khattab R., Salem R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020;11 doi: 10.3389/fimmu.2020.01446. PubMed DOI PMC
Ye Q., Wang B., Mao J. The Pathogenesis and Treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020;80:607–613. doi: 10.1016/j.jinf.2020.03.037. PubMed DOI PMC
Zhou M., Zhang X., Qu J. Coronavirus Disease 2019 (COVID-19): A Clinical Update. Front. Med. 2020;14:126–135. doi: 10.1007/s11684-020-0767-8. PubMed DOI PMC
Kubelkova K., Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front. Cell Infect. Microbiol. 2019;9:241. doi: 10.3389/fcimb.2019.00241. PubMed DOI PMC
Wu K.E., Fazal F.M., Parker K.R., Zou J., Chang H.Y. RNA-GPS Predicts SARS-CoV-2 RNA Residency to Host Mitochondria and Nucleolus. Cell Syst. 2020;11:102–108.e3. doi: 10.1016/j.cels.2020.06.008. PubMed DOI PMC
Jiang H.W., Zhang H.N., Meng Q.F., Xie J., Li Y., Chen H., Zheng Y.X., Wang X.N., Qi H., Zhang J., et al. SARS-CoV-2 Orf9b Suppresses Type I Interferon Responses by Targeting TOM70. Cell Mol. Immunol. 2020;17:998–1000. doi: 10.1038/s41423-020-0514-8. PubMed DOI PMC
Battagello D.S., Dragunas G., Klein M.O., Ayub A.L.P., Velloso F.J., Correa R.G. Unpuzzling COVID-19: Tissue-Related Signaling Pathways Associated with SARS-CoV-2 Infection and Transmission. Clin. Sci. 2020;134:2137–2160. doi: 10.1042/CS20200904. PubMed DOI PMC
Gurung P., Lukens J.R., Kanneganti T.D. Mitochondria: Diversity in the Regulation of the NLRP3 Inflammasome. Trends Mol. Med. 2015;21:193–201. doi: 10.1016/j.molmed.2014.11.008. PubMed DOI PMC
Burtscher J., Cappellano G., Omori A., Koshiba T., Millet G.P. Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. Science. 2020;23:101631. doi: 10.1016/j.isci.2020.101631. PubMed DOI PMC
Wood E., Hall K.H., Tate W. Role of Mitochondria, Oxidative Stress and the Response to Antioxidants in Myalgic Encephalomyelitis/chronic Fatigue Syndrome: A Possible Approach to SARS-CoV-2 “Long-Haulers”? Chronic Dis. Transl. Med. 2020 doi: 10.1016/j.cdtm.2020.11.002. PubMed DOI PMC
Marino Gammazza A., Légaré S., Lo Bosco G., Fucarino A., Angileri F., Conway de Macario E., Macario A.J., Cappello F. Human Molecular Chaperones Share with SARS-CoV-2 Antigenic Epitopes Potentially Capable of Eliciting Autoimmunity against Endothelial Cells: Possible Role of Molecular Mimicry in COVID-19. Cell Stress Chaperones. 2020;25:737–741. doi: 10.1007/s12192-020-01148-3. PubMed DOI PMC
Kanduc D., Shoenfeld Y. Molecular Mimicry between SARS-CoV-2 Spike Glycoprotein and Mammalian Proteomes: Implications for the Vaccine. Immunol. Res. 2020;68:310–313. doi: 10.1007/s12026-020-09152-6. PubMed DOI PMC
Lucchese G., Flöel A. Molecular Mimicry between SARS-CoV-2 and Respiratory Pacemaker Neurons. Autoimmun. Rev. 2020;19:102556. doi: 10.1016/j.autrev.2020.102556. PubMed DOI PMC
Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489–1501.e15. doi: 10.1016/j.cell.2020.05.015. PubMed DOI PMC
Fu Y., Cheng Y., Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol. Sin. 2020;35:266–271. doi: 10.1007/s12250-020-00207-4. PubMed DOI PMC
Mahevas M., Tran V.T., Roumier M., Chabrol A., Paule R., Guillaud C., Gallien S., Lepeule R., Szwebel T.A., Lescure X., et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J. Autoimmun. 2020;114:102506. doi: 10.1016/j.jaut.2020.102506. PubMed DOI PMC
Platanias L. Mechanisms of Type-I- and Type-II-Interferon-Mediated Signalling. Nat. Rev. Immunol. 2005;5:375–386. doi: 10.1038/nri1604. PubMed DOI
Chen K., Liu J., Cao X. Regulation of Type I Interferon Signaling in Immunity and Inflammation: A Comprehensive Review. J. Autoimmun. 2017;83:1–11. doi: 10.1016/j.jaut.2017.03.008. PubMed DOI
Dias Junior A.G., Sampaio N.G., Rehwinkel J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol. 2019;27:75–85. doi: 10.1016/j.tim.2018.08.007. PubMed DOI PMC
Li M.Y., Li L., Zhang Y., Wang X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 2020;9:45. doi: 10.1186/s40249-020-00662-x. PubMed DOI PMC
Kanduc D. From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies. 2020;9:33. doi: 10.3390/antib9030033. PubMed DOI PMC
Cappello F., Gammazza A.M., Dieli F., Conway de Macario E., Macario A.J. Does SARS-CoV-2 Trigger Stress-InducedAutoimmunity by Molecular Mimicry? A Hypothesis. J. Clin. Med. 2020;9:2038. doi: 10.3390/jcm9072038. PubMed DOI PMC
Amiral J., Vissac A.M., Seghatchian J. Covid-19, induced activation of hemostasis, and immune reactions: Can an auto-immune reaction contribute to the delayed severe complications observed in some patients? Transfus. Apher. Sci. 2020;59:102804. doi: 10.1016/j.transci.2020.102804. PubMed DOI PMC
Townsend A. Autoimmunity to ACE2 as a possible cause of tissue inflammation in Covid-19. Med. Hypotheses. 2020;144:110043. doi: 10.1016/j.mehy.2020.110043. PubMed DOI PMC
Woodruff M.C., Ramonell R.P., Eun-Hyung Lee F., Sanz I. Clinically identifiable autoreactivity is common in severe SARS-CoV-2 Infection. medRxiv. 2020 doi: 10.1101/2020.10.21.20216192. DOI