Why Does SARS-CoV-2 Infection Induce Autoantibody Production?

. 2021 Mar 22 ; 10 (3) : . [epub] 20210322

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33809954

Grantová podpora
MV-83962-1/OBVV-2020 Ministry of Interior of the Czech Republic
Long-term organization development plan 238 Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health 239 Sciences, University of Defence. Ministry of Defence of the Czech Republic

SARS-CoV-2 infection induces the production of autoantibodies, which is significantly associated with complications during hospitalization and a more severe prognosis in COVID-19 patients. Such a response of the patient's immune system may reflect (1) the dysregulation of the immune response or (2) it may be an attempt to regulate itself in situations where the non-infectious self poses a greater threat than the infectious non-self. Of significance may be the primary virus-host cell interaction where the surface-bound ACE2 ectoenzyme plays a critical role. Here, we present a brief analysis of recent findings concerning the immune recognition of SARS-CoV-2, which, we believe, favors the second possibility as the underlying reason for the production of autoantibodies during COVID-19.

Zobrazit více v PubMed

Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., Chen H., Ding X., Zhao H., Zhang H., et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N. Engl. J. Med. 2020;382:e38. doi: 10.1056/NEJMc2007575. PubMed DOI PMC

Zuo Y., Estes S.K., Gandhi A.A., Yalavarthi S., Ali R.A., Shi H., Sule G., Gockman K., Madison J.A., Zuo M., et al. Prothrombotic Antiphospholipid Antibodies in COVID-19. medRxiv. 2020 doi: 10.1101/2020.06.15.20131607. DOI

Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., et al. Autoantibodies against Type I IFNs in Patients with Life-Threatening COVID-19. Science. 2020;370:6515. doi: 10.1126/science.abd4585. PubMed DOI PMC

Zhou Y., Han T., Chen J., Hou C., Hua L., He S., Guo Y., Zhang S., Wang Y., Yuan J., et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin. Transl Sci. 2020;13:1077–1086. doi: 10.1111/cts.12805. PubMed DOI PMC

Wang E.Y., Mao T., Klein J., Dai Y., Huck J.D., Liu F., Zheng N.S., Zhou T., Israelow B., Wong P., et al. Diverse Functional Autoantibodies in Patients with COVID-19. medRxiv. 2020 doi: 10.1101/2020.12.10.20247205. PubMed DOI

Chang S.E., Feng A., Meng W., Apostolidis S.A., Mack E., Artandi M., Barman L., Bennett K., Chakraborty S., Chang I., et al. New-Onset IgG Autoantibodies in Hospitalized Patients with COVID-19. medRxiv. 2021 doi: 10.1101/2021.01.27.21250559. PubMed DOI PMC

Pascolini S., Vannini A., Deleonardi G., Ciordinik M., Sensoli A., Carletti I., Veronesi L., Ricci C., Pronesti A., Mazzanti L., et al. COVID-19 and Immunological Dysregulation: Can Autoantibodies Be Useful? Clin. Transl. Sci. 2020 doi: 10.1111/cts.12908. PubMed DOI PMC

Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020;20:363–374. doi: 10.1038/s41577-020-0311-8. PubMed DOI PMC

Matz H., Munir D., Logue J., Dooley H. The Immunoglobulins of Cartilaginous Fishes. Dev. Comp. Immunol. 2021;115:103873. doi: 10.1016/j.dci.2020.103873. PubMed DOI PMC

Tyler A. Agglutination of Sea-Urchin Eggs by Means of a Substance Extracted from the Eggs. Proc. Natl. Acad. Sci. USA. 1940;26:249–256. doi: 10.1073/pnas.26.4.249. PubMed DOI PMC

Tyler A. On Natural Auto-Antibodies as Evidenced by Anti-Venin in Serum and Liver Extract of the Gila Monster. Proc. Natl. Acad. Sci. USA. 1946;32:195–201. doi: 10.1073/pnas.32.7.195. PubMed DOI PMC

Boyden S. Cellular recognition of foreign matter. Int. Rev. Exp. Pathol. 1963;2:311–356. PubMed

Boyden S. Natural Antibodies and the Immune Response. Adv. Immunol. 1966;5:1–28. doi: 10.1016/s0065-2776(08)60271-0. PubMed DOI

Asherson G.L., Rose M.E. Autoantibody Production in Rabbits III. The Effect of Infection with Eimeria Stiedae and Its Relation to Natural Antibody. Immunology. 1963;6:207–216. PubMed PMC

Asherson G.L., Holborow E.J. Autoantibody Production in Rabbits VII. Autoantibodies to Gut Produced by the Injection of Bacteria. Immunology. 1966;10:161–167. PubMed PMC

Hammarström S., Perlmann P., Gustafsson B.E., Lagercrantz R. Autoantibodies to Colon in Germfree Rats Monocontaminated with Clostridium Difficile. J. Exp. Med. 1969;129:747–756. doi: 10.1084/jem.129.4.747. PubMed DOI PMC

Kubelkova K., Hudcovic T., Kozakova H., Pejchal J., Macela A. Early Infection-Induced Natural Antibody Response. Sci. Rep. 2021;11:1541. doi: 10.1038/s41598-021-81083-0. PubMed DOI PMC

Havlasová J., Hernychová L., Halada P., Pellantová V., Krejsek J., Stulík J., Macela A., Jungblut P.R., Larsson P., Forsman M. Mapping of Immunoreactive Antigens of Francisella Tularensis Live Vaccine Strain. Proteomics. 2002;2:857–867. doi: 10.1002/1615-9861(200207)2:7<857::AID-PROT857>3.0.CO;2-L. PubMed DOI

Havlasová J., Hernychová L., Brychta M., Hubálek M., Lenco J., Larsson P., Lundqvist M., Forsman M., Krocová Z., Stulík J., et al. Proteomic Analysis of Anti-Francisella Tularensis LVS Antibody Response in Murine Model of Tularemia. Proteomics. 2005;5:2090–2103. doi: 10.1002/pmic.200401123. PubMed DOI

Eyles J.E., Unal B., Hartley M.G., Newstead S.L., Flick-Smith H., Prior J.L., Oyston P.C., Randall A., Mu Y., Hirst S., et al. Immunodominant Francisella Tularensis Antigens Identified Using Proteome Microarray. Proteomics. 2007;7:2172–2183. doi: 10.1002/pmic.200600985. PubMed DOI

Janovská S., Pávková I., Reichelová M., Hubáleka M., Stulík J., Macela A. Proteomic Analysis of Antibody Response in a Case of Laboratory-Acquired Infection with Francisella Tularensis Subsp. Tularensis. Folia Microbiol. 2007;52:194–198. doi: 10.1007/BF02932159. PubMed DOI

Janovská S., Pávková I., Hubálek M., Lenco J., Macela A., Stulík J. Identification of Immunoreactive Antigens in Membrane Proteins Enriched Fraction from Francisella Tularensis LVS. Immunol. Lett. 2007;108:151–159. doi: 10.1016/j.imlet.2006.12.004. PubMed DOI

Baumgarth N., Waffarn E.E., Nguyen T.T.T. Natural and Induced B-1 Cell Immunity to Infections Raises Questions of Nature versus Nurture. Ann. N. Y. Acad. Sci. 2015;1362:188–199. doi: 10.1111/nyas.12804. PubMed DOI PMC

Schwartz J.T., Barker J.H., Long M.E., Kaufman J., McCracken J., Allen L.-A.H. Natural IgM Mediates Complement-Dependent Uptake of Francisella Tularensis by Human Neutrophils via CR1 and CR3 in Nonimmune Serum. J. Immunol. 2012;189:3064–3077. doi: 10.4049/jimmunol.1200816. PubMed DOI PMC

Plzakova L., Krocova Z., Kubelkova K., Macela A. Entry of Francisella Tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors. PLoS ONE. 2015;10:e0132571. doi: 10.1371/journal.pone.0132571. PubMed DOI PMC

Geier H., Celli J. Phagocytic Receptors Dictate Phagosomal Escape and Intracellular Proliferation of Francisella Tularensis. Infect. Immun. 2011;79:2204–2214. doi: 10.1128/IAI.01382-10. PubMed DOI PMC

Netea M.G., Quintin J., van der Meer J.W. Trained Immunity: A Memory for Innate Host Defense. Cell Host Microbe. 2011;9:355–361. doi: 10.1016/j.chom.2011.04.006. PubMed DOI

Netea M.G., Joosten L.A., Latz E., Mills K.H., Natoli G., Stunnenberg H.G., O’Neill L.A., Xavier R.J. Trained Immunity: A Program of Innate Immune Memory in Health and Disease. Science. 2016;352:6284. doi: 10.1126/science.aaf1098. PubMed DOI PMC

Netea M.G., Domínguez-Andrés J., Barreiro L.B., Chavakis T., Divangahi M., Fuchs E., Joosten L.A.B., van der Meer J.W., Mhlanga M.M., Mulder W.J.M., et al. Defining Trained Immunity and Its Role in Health and Disease. Nat. Rev. Immunol. 2020;20:375–388. doi: 10.1038/s41577-020-0285-6. PubMed DOI PMC

Griffin D.O., Holodick N.E., Rothstein T.L. Human B1 Cells in Umbilical Cord and Adult Peripheral Blood Express the Novel Phenotype CD20+ CD27+ CD43+ CD70- J. Exp. Med. 2011;208:67–80. doi: 10.1084/jem.20101499. Erratum in 2011, 208, 871; Erratum in 2011, 208, 409; Erratum in 2011, 208, 67. PubMed DOI PMC

Griffin D.O., Rothstein T.L. Human b1 Cell Frequency: Isolation and Analysis of Human b1 Cells. Front. Immunol. 2012;3:122. doi: 10.3389/fimmu.2012.00122. PubMed DOI PMC

Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC

Bourgonje A.R., Abdulle A.E., Timens W., Hillebrands J.L., Navis G.J., Gordijn S.J., Bolling M.C., Dijkstra G., Voors A.A., Osterhaus A.D., et al. Angiotensin-Converting Enzyme 2 (ACE2), SARS-CoV-2 and the Pathophysiology of Coronavirus Disease 2019 (COVID-19) J. Pathol. 2020;251:228–248. doi: 10.1002/path.5471. PubMed DOI PMC

Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., Lu G., Qiao C., Hu Y., Yuen K.Y., et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020;181:894–904.e9. doi: 10.1016/j.cell.2020.03.045. PubMed DOI PMC

Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.-C., Turner A.J., Raizada M.K., Grant M.B., Oudit G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res. 2020;126 doi: 10.1161/CIRCRESAHA.120.317015. PubMed DOI PMC

Mahmudpour M., Roozbeh J., Keshavarz M., Farrokhi S., Nabipour I. COVID-19 Cytokine Storm: The Anger of Inflammation. Cytokine. 2020;133:155151. doi: 10.1016/j.cyto.2020.155151. PubMed DOI PMC

Ragab D., Salah Eldin H., Taeimah M., Khattab R., Salem R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020;11 doi: 10.3389/fimmu.2020.01446. PubMed DOI PMC

Ye Q., Wang B., Mao J. The Pathogenesis and Treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020;80:607–613. doi: 10.1016/j.jinf.2020.03.037. PubMed DOI PMC

Zhou M., Zhang X., Qu J. Coronavirus Disease 2019 (COVID-19): A Clinical Update. Front. Med. 2020;14:126–135. doi: 10.1007/s11684-020-0767-8. PubMed DOI PMC

Kubelkova K., Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front. Cell Infect. Microbiol. 2019;9:241. doi: 10.3389/fcimb.2019.00241. PubMed DOI PMC

Wu K.E., Fazal F.M., Parker K.R., Zou J., Chang H.Y. RNA-GPS Predicts SARS-CoV-2 RNA Residency to Host Mitochondria and Nucleolus. Cell Syst. 2020;11:102–108.e3. doi: 10.1016/j.cels.2020.06.008. PubMed DOI PMC

Jiang H.W., Zhang H.N., Meng Q.F., Xie J., Li Y., Chen H., Zheng Y.X., Wang X.N., Qi H., Zhang J., et al. SARS-CoV-2 Orf9b Suppresses Type I Interferon Responses by Targeting TOM70. Cell Mol. Immunol. 2020;17:998–1000. doi: 10.1038/s41423-020-0514-8. PubMed DOI PMC

Battagello D.S., Dragunas G., Klein M.O., Ayub A.L.P., Velloso F.J., Correa R.G. Unpuzzling COVID-19: Tissue-Related Signaling Pathways Associated with SARS-CoV-2 Infection and Transmission. Clin. Sci. 2020;134:2137–2160. doi: 10.1042/CS20200904. PubMed DOI PMC

Gurung P., Lukens J.R., Kanneganti T.D. Mitochondria: Diversity in the Regulation of the NLRP3 Inflammasome. Trends Mol. Med. 2015;21:193–201. doi: 10.1016/j.molmed.2014.11.008. PubMed DOI PMC

Burtscher J., Cappellano G., Omori A., Koshiba T., Millet G.P. Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. Science. 2020;23:101631. doi: 10.1016/j.isci.2020.101631. PubMed DOI PMC

Wood E., Hall K.H., Tate W. Role of Mitochondria, Oxidative Stress and the Response to Antioxidants in Myalgic Encephalomyelitis/chronic Fatigue Syndrome: A Possible Approach to SARS-CoV-2 “Long-Haulers”? Chronic Dis. Transl. Med. 2020 doi: 10.1016/j.cdtm.2020.11.002. PubMed DOI PMC

Marino Gammazza A., Légaré S., Lo Bosco G., Fucarino A., Angileri F., Conway de Macario E., Macario A.J., Cappello F. Human Molecular Chaperones Share with SARS-CoV-2 Antigenic Epitopes Potentially Capable of Eliciting Autoimmunity against Endothelial Cells: Possible Role of Molecular Mimicry in COVID-19. Cell Stress Chaperones. 2020;25:737–741. doi: 10.1007/s12192-020-01148-3. PubMed DOI PMC

Kanduc D., Shoenfeld Y. Molecular Mimicry between SARS-CoV-2 Spike Glycoprotein and Mammalian Proteomes: Implications for the Vaccine. Immunol. Res. 2020;68:310–313. doi: 10.1007/s12026-020-09152-6. PubMed DOI PMC

Lucchese G., Flöel A. Molecular Mimicry between SARS-CoV-2 and Respiratory Pacemaker Neurons. Autoimmun. Rev. 2020;19:102556. doi: 10.1016/j.autrev.2020.102556. PubMed DOI PMC

Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489–1501.e15. doi: 10.1016/j.cell.2020.05.015. PubMed DOI PMC

Fu Y., Cheng Y., Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol. Sin. 2020;35:266–271. doi: 10.1007/s12250-020-00207-4. PubMed DOI PMC

Mahevas M., Tran V.T., Roumier M., Chabrol A., Paule R., Guillaud C., Gallien S., Lepeule R., Szwebel T.A., Lescure X., et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J. Autoimmun. 2020;114:102506. doi: 10.1016/j.jaut.2020.102506. PubMed DOI PMC

Platanias L. Mechanisms of Type-I- and Type-II-Interferon-Mediated Signalling. Nat. Rev. Immunol. 2005;5:375–386. doi: 10.1038/nri1604. PubMed DOI

Chen K., Liu J., Cao X. Regulation of Type I Interferon Signaling in Immunity and Inflammation: A Comprehensive Review. J. Autoimmun. 2017;83:1–11. doi: 10.1016/j.jaut.2017.03.008. PubMed DOI

Dias Junior A.G., Sampaio N.G., Rehwinkel J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol. 2019;27:75–85. doi: 10.1016/j.tim.2018.08.007. PubMed DOI PMC

Li M.Y., Li L., Zhang Y., Wang X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 2020;9:45. doi: 10.1186/s40249-020-00662-x. PubMed DOI PMC

Kanduc D. From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies. 2020;9:33. doi: 10.3390/antib9030033. PubMed DOI PMC

Cappello F., Gammazza A.M., Dieli F., Conway de Macario E., Macario A.J. Does SARS-CoV-2 Trigger Stress-InducedAutoimmunity by Molecular Mimicry? A Hypothesis. J. Clin. Med. 2020;9:2038. doi: 10.3390/jcm9072038. PubMed DOI PMC

Amiral J., Vissac A.M., Seghatchian J. Covid-19, induced activation of hemostasis, and immune reactions: Can an auto-immune reaction contribute to the delayed severe complications observed in some patients? Transfus. Apher. Sci. 2020;59:102804. doi: 10.1016/j.transci.2020.102804. PubMed DOI PMC

Townsend A. Autoimmunity to ACE2 as a possible cause of tissue inflammation in Covid-19. Med. Hypotheses. 2020;144:110043. doi: 10.1016/j.mehy.2020.110043. PubMed DOI PMC

Woodruff M.C., Ramonell R.P., Eun-Hyung Lee F., Sanz I. Clinically identifiable autoreactivity is common in severe SARS-CoV-2 Infection. medRxiv. 2020 doi: 10.1101/2020.10.21.20216192. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...