Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19799467
DOI
10.1021/pr900570b
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny * chemie genetika metabolismus MeSH
- buněčné linie MeSH
- chromatografie kapalinová metody MeSH
- faktory virulence chemie genetika metabolismus MeSH
- Francisella tularensis * genetika metabolismus patogenita MeSH
- hmotnostní spektrometrie metody MeSH
- isoelektrická fokusace MeSH
- lidé MeSH
- makrofágy cytologie metabolismus MeSH
- membránové proteiny * chemie genetika metabolismus MeSH
- míra přežití MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- peptidy chemie genetika metabolismus MeSH
- proteindisulfidisomerasy * chemie genetika metabolismus MeSH
- proteom analýza MeSH
- proteomika metody MeSH
- tularemie metabolismus mortalita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- faktory virulence MeSH
- membránové proteiny * MeSH
- peptidy MeSH
- proteindisulfidisomerasy * MeSH
- proteom MeSH
Francisella tularensis (F. tularensis) is highly infectious for humans via aerosol route and untreated infections with the highly virulent subsp. tularensis can be fatal. Our knowledge regarding key virulence determinants has increased recently but is still somewhat limited. Surface proteins are potential virulence factors and therapeutic targets, and in this study, we decided to target three genes encoding putative membrane lipoproteins in F. tularensis LVS. One of the genes encoded a protein with high homology to the protein family of disulfide oxidoreductases DsbA. The two other genes encoded proteins with homology to the VacJ, a virulence determinant of Shigella flexneri. The gene encoding the DsbA homologue was verified to be required for survival and replication in macrophages and importantly also for in vivo virulence in the mouse infection model for tularemia. Using a combination of classical and shotgun proteome analyses, we were able to identify several proteins that accumulated in fractions enriched for membrane-associated proteins in the dsbA mutant. These proteins are substrate candidates for the DsbA disulfide oxidoreductase as well as being responsible for the virulence attenuation of the dsbA mutant.
Citace poskytuje Crossref.org