Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26984671
PubMed Central
PMC4794740
DOI
10.1038/srep23310
PII: srep23310
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis mikrobiologie MeSH
- cytokininy analýza biosyntéza farmakologie MeSH
- kyselina salicylová farmakologie MeSH
- listy rostlin mikrobiologie MeSH
- nemoci rostlin mikrobiologie MeSH
- Pseudomonas fluorescens metabolismus MeSH
- Pseudomonas syringae účinky léků růst a vývoj patogenita MeSH
- regulátory růstu rostlin farmakologie MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kyselina salicylová MeSH
- regulátory růstu rostlin MeSH
Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.
Zobrazit více v PubMed
Bari R. & Jones J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488 (2009). PubMed
Grant M. R. & Jones J. D. Hormone (dis)harmony moulds plant health and disease. Science 324, 750–752 (2009). PubMed
Pieterse C. M. J., Leon-Reyes A., van der Ent S. & van Wees S. C. M. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316 (2009). PubMed
Pieterse C. M. J., van der Does D., Zamioudis C., Leon-Reyes A. & van Wees S. C. M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012). PubMed
Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449 (2006). PubMed
Hwang I., Sheen J. & Müller B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 63, 353–380 (2012). PubMed
Walters D. R., McRoberts W. K. & Fitt B. D. Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biol. Rev. Camb. Philos. Soc. 83, 79–102 (2008). PubMed
Balibrea Lara M. E. PubMed PMC
Ehneß R. & Roitsch T. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in PubMed
Choi J. PubMed
Jiang C. J. PubMed
Großkinsky D. K., van der Graaff E. & Roitsch T. Phytoalexin transgenics in crop protection – Fairy tale with a happy end? Plant Sci. 195, 54–70 (2012). PubMed
Großkinsky D. K., van der Graaff E. & Roitsch T. Abscisic acid-cytokinin antagonism modulates resistance against PubMed
Ko K.-W.
Berg G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009). PubMed
Whipps J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001). PubMed
Haas D. & Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005). PubMed
van Wees S. C., van der Ent S. & Pieterse C. M. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443–448 (2008). PubMed
Arkhipova T. N., Veselov S. U., Melentiev A. I., Martynenko E. V. & Kudoyarova G. R. Ability of bacterium
Ortíz-Castro R., Valencia-Cantero E. & López-Bucio J. Plant growth promotion by PubMed PMC
Liu F., Xing S., Ma H., Du Z. & Ma B. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in PubMed
García de Salamone I. E., Hynes R. K. & Nelson L. M. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can. J. Microbiol. 47, 404–411 (2001). PubMed
Pallai R., Hynes K. H., Verma B. & Nelson L. M. Phytohormone production and colonization of canola ( PubMed
Katagiri F., Thilmony R. & He S. Y. The PubMed PMC
Großkinsky D. K., Edelsbrunner K., Pfeifhofer H., van der Graaff E. & Roitsch T. Cis- and trans-zeatin differentially modulate plant immunity. Plant Signal. Behav. 8, e24798 (2013). PubMed PMC
Novák O., Hauserová E., Amakorová P., Doležal K. & Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69, 2214–2224 (2008). PubMed
Koenig R. L., Morris R. O. & Polacco J. C. tRNA is the source of low-level PubMed PMC
Ryu J.
Podlešáková K. PubMed
Compant S., Duffy B., Nowak J., Clément C. & Barka E. A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959 (2005). PubMed PMC
Wu C. H., Bernard S. M., Andersen G. L. & Chen W. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb. Biotechnol. 2, 428–440 (2009). PubMed PMC
Chalupowicz L., Barash I., Panijel M., Sessa G. & Manulis-Sasson S. Regulatory interactions between quorum-sensing, Auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of PubMed
Delaney T. P. PubMed
Nawrath C. & Métraux J.-P. Salicylic acid induction-deficient mutants of PubMed PMC
Cao H., Bowling S. A., Gordon A. S. & Dong X. Characterization of an PubMed PMC
Berger S., Bell E. & Mullet J. E. Two methyl jasmonate-insensitive mutants show altered expression of PubMed PMC
Guzmán P. & Ecker J. R. Exploiting the triple response of PubMed PMC
van Peer R., Niemann G. J. & Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by
Ongena M.
Glazebrook J. & Ausubel F. M. Isolation of phytoalexin-deficient mutants of PubMed PMC
Glawischnig E., Hansen B. G., Olsen C. E. & Halkier B. A. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in PubMed PMC
Glawischnig E. Camalexin. Phytochemistry 68, 401–406 (2007). PubMed
Rico A., McCraw S. L. & Preston G. M. The metabolic interface between PubMed
Gan S. & Amasino R. M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988 (1995). PubMed
Kuderová A. PubMed
Li X. G. PubMed
Akiyoshi D. E., Klee H., Amasino R. M., Nester E. W. & Gordon M. P. T-DNA of PubMed PMC
Hann D. R. PubMed
Großkinsky D. K., Koffler B. E., Roitsch T., Maier R. & Zechmann B. Compartment specific antioxidative defense in PubMed PMC
Bloemberg G. V., Wijfjes A. H. M., Lamers G. E. M., Stuurman N. & Lugtenberg B. J. J. Simultaneous imaging of PubMed
Zipfel C. PubMed
Biochemical and Structural Aspects of Cytokinin Biosynthesis and Degradation in Bacteria
Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects