Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis

. 2016 Mar 17 ; 6 () : 23310. [epub] 20160317

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26984671

Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.

Zobrazit více v PubMed

Bari R. & Jones J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488 (2009). PubMed

Grant M. R. & Jones J. D. Hormone (dis)harmony moulds plant health and disease. Science 324, 750–752 (2009). PubMed

Pieterse C. M. J., Leon-Reyes A., van der Ent S. & van Wees S. C. M. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316 (2009). PubMed

Pieterse C. M. J., van der Does D., Zamioudis C., Leon-Reyes A. & van Wees S. C. M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012). PubMed

Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449 (2006). PubMed

Hwang I., Sheen J. & Müller B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 63, 353–380 (2012). PubMed

Walters D. R., McRoberts W. K. & Fitt B. D. Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biol. Rev. Camb. Philos. Soc. 83, 79–102 (2008). PubMed

Balibrea Lara M. E. PubMed PMC

Ehneß R. & Roitsch T. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in PubMed

Choi J. PubMed

Argueso C. T. PubMed PMC

Großkinsky D. K. PubMed PMC

Jiang C. J. PubMed

Großkinsky D. K., van der Graaff E. & Roitsch T. Phytoalexin transgenics in crop protection – Fairy tale with a happy end? Plant Sci. 195, 54–70 (2012). PubMed

Großkinsky D. K., van der Graaff E. & Roitsch T. Abscisic acid-cytokinin antagonism modulates resistance against PubMed

Ko K.-W.

Berg G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009). PubMed

Whipps J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001). PubMed

Haas D. & Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005). PubMed

van Wees S. C., van der Ent S. & Pieterse C. M. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443–448 (2008). PubMed

Arkhipova T. N., Veselov S. U., Melentiev A. I., Martynenko E. V. & Kudoyarova G. R. Ability of bacterium

Ortíz-Castro R., Valencia-Cantero E. & López-Bucio J. Plant growth promotion by PubMed PMC

Liu F., Xing S., Ma H., Du Z. & Ma B. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in PubMed

García de Salamone I. E., Hynes R. K. & Nelson L. M. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can. J. Microbiol. 47, 404–411 (2001). PubMed

Pallai R., Hynes K. H., Verma B. & Nelson L. M. Phytohormone production and colonization of canola ( PubMed

Katagiri F., Thilmony R. & He S. Y. The PubMed PMC

Naseem M. PubMed PMC

Großkinsky D. K., Edelsbrunner K., Pfeifhofer H., van der Graaff E. & Roitsch T. Cis- and trans-zeatin differentially modulate plant immunity. Plant Signal. Behav. 8, e24798 (2013). PubMed PMC

Novák O., Hauserová E., Amakorová P., Doležal K. & Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69, 2214–2224 (2008). PubMed

Koenig R. L., Morris R. O. & Polacco J. C. tRNA is the source of low-level PubMed PMC

Ryu J.

Podlešáková K. PubMed

Winter D. PubMed PMC

Compant S., Duffy B., Nowak J., Clément C. & Barka E. A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959 (2005). PubMed PMC

Wu C. H., Bernard S. M., Andersen G. L. & Chen W. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb. Biotechnol. 2, 428–440 (2009). PubMed PMC

Chalupowicz L., Barash I., Panijel M., Sessa G. & Manulis-Sasson S. Regulatory interactions between quorum-sensing, Auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of PubMed

Depuydt S. PubMed PMC

Higuchi M. PubMed PMC

Delaney T. P. PubMed

Nawrath C. & Métraux J.-P. Salicylic acid induction-deficient mutants of PubMed PMC

Cao H., Bowling S. A., Gordon A. S. & Dong X. Characterization of an PubMed PMC

Berger S., Bell E. & Mullet J. E. Two methyl jasmonate-insensitive mutants show altered expression of PubMed PMC

Fernández-Calvo P. PubMed PMC

Guzmán P. & Ecker J. R. Exploiting the triple response of PubMed PMC

van Peer R., Niemann G. J. & Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by

Ongena M.

Glazebrook J. & Ausubel F. M. Isolation of phytoalexin-deficient mutants of PubMed PMC

Glawischnig E., Hansen B. G., Olsen C. E. & Halkier B. A. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in PubMed PMC

Glawischnig E. Camalexin. Phytochemistry 68, 401–406 (2007). PubMed

Rico A., McCraw S. L. & Preston G. M. The metabolic interface between PubMed

Gan S. & Amasino R. M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988 (1995). PubMed

Kuderová A. PubMed

Li X. G. PubMed

Akiyoshi D. E. PubMed PMC

Akiyoshi D. E., Klee H., Amasino R. M., Nester E. W. & Gordon M. P. T-DNA of PubMed PMC

Hann D. R. PubMed

Rivero R. M. PubMed PMC

Großkinsky D. K., Koffler B. E., Roitsch T., Maier R. & Zechmann B. Compartment specific antioxidative defense in PubMed PMC

Bloemberg G. V., Wijfjes A. H. M., Lamers G. E. M., Stuurman N. & Lugtenberg B. J. J. Simultaneous imaging of PubMed

Zipfel C. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...