Structure-function relation of cytokinins determines their differential efficiency in mediating tobacco resistance against Pseudomonas syringae

. 2025 Jan-Feb ; 177 (1) : e70028.

Jazyk angličtina Země Dánsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39727031

Grantová podpora
4093-00255 Teknologi og Produktion, Det Frie Forskningsråd
CZ.02.01.01/00/22_008/0004635 Ministry of Education, Youth and Sports of the Czech Republic
21-07661S Grantová agentura Ceské republiky (GACR)
LM2023048 CzeCOS Program

The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae. The efficiency of resistance effects was evaluated based on impacts on the host plant defence response by scoring infection symptoms and the direct impact on the pathogen by assessment of proliferation in planta. To identify common and cytokinin-specific components involved in resistance effects, transcriptome profiling and targeted metabolomics were conducted in leaves treated with the different cytokinins. We observed clearly different potentials of the tested cytokinins in either suppressing infection symptoms or pathogen proliferation. Gene regulation and metabolite analyses revealed cytokinin-type specific impacts on defence components, such as salicylic acid and related signalling, expression of PR proteins, and regulation of specialised metabolism. Cytokinins also strongly affected plant cell physiological parameters, such as a remarkable decrease in amino acid pools. Hence, this study provides comparative information on the efficiency of diverse cytokinins in mediating resistance in one well-studied pathosystem and insights into the specific regulation of resistance effects mediated by different cytokinin molecules. This is particularly relevant for studies on the function of cytokinins or other phytohormones and compounds interacting with cytokinin activities in the context of pathogen infections and other stress scenarios, considering the diverse cytokinins present in plants.

Zobrazit více v PubMed

Akhtar, S.S. , Mekureyaw, M.F. , Pandey, C. & Roitsch, T. (2019) Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Frontiers in Plant Science, 10, 11. 10.3389/fpls.2019.01777 PubMed DOI PMC

Aremu, A.O. , Gruz, J. , Šubrtová, M. , Szüčová, L. , Doležal, K. , Bairu, M.W. , Finnie, J.F. & Van Staden, J. (2013) Antioxidant and phenolic acid profiles of tissue cultured and acclimatized Merwilla plumbea plantlets in relation to the applied cytokinins. Journal of Plant Physiology, 170, 1303–1308. 10.1016/j.jplph.2013.04.008 PubMed DOI

Argueso, C.T. , Ferreira, F.J. , Epple, P. , To, J.P.C ., Hutchison, C. E. , Schaller, G.E. , Dangl, J.L. & Kieber, J.J. (2012) Two‐component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLOS Genetics, 8, e1002448. 10.1371/journal.pgen.1002448 PubMed DOI PMC

Argueso, C.T. & Kieber, J.J. (2024) Cytokinin: from autoclaved DNA to two‐component signaling. The Plant Cell, 36, 1429–1450. 10.1093/plcell/koad327 PubMed DOI PMC

Babosha, A.V. (2009) Regulation of resistance and susceptibility in wheat‐powdery mildew pathosystem with exogenous cytokinins. Journal of Plant Physiology, 166, 1892–1903. 10.1016/j.jplph.2009.05.014 PubMed DOI

Barna, B. , Smigocki, A.C. & Baker, J.C. (2008) Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in Nicotiana spp. Phytopathology, 98, 1242–1247. 10.1094/PHYTO-98-11-1242 PubMed DOI

Behr, M. , Motyka, V. , Weihmann, F. , Malbeck, J. , Deising, H.B. & Wirsel, S.G.R. (2012) Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Molecular Plant‐Microbe Interactions, 25, 1073–1082. 10.1094/MPMI-01-12-0012-R PubMed DOI

Berger, S. , Sinha, A.K. & Roitsch, T. (2007) Plant physiology meets phytopathology: plant primary metabolism and plant‐pathogen interactions. Journal of Experimental Botany, 58, 4019–4026. 10.1093/jxb/erm298 PubMed DOI

Bozsó, Z. & Barna, B. (2021) Diverse effect of two cytokinins, kinetin and benzyladenine, on plant development, biotic stress tolerance and gene expression. Life, 11, 1404. 10.3390/life11121404 PubMed DOI PMC

Brenner, W.G. & Schmülling, T. (2012) Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ‐specific responses. BMC Plant Biology, 12, 112. 10.1186/1471-2229-12-112 PubMed DOI PMC

Choi, J. , Huh, S.U. , Kojima, M. , Sakakibara, H. , Paek, K.‐H. & Hwang, I (2010) The cytokinin‐activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1‐dependent salicylic acid signaling in Arabidopsis. Developmental Cell, 19, 284–295. 10.1016/j.devcel.2010.07.011 PubMed DOI

Dusa, A. (2022) venn: Draw Venn Diagrams. R package version 1.11. https://CRAN.R-project.org/package=venn

Edwards, K. , Fernandez‐Pozo, N. , Drake‐Stowe, K. , Humphry, M. , Evans, A.D. , Bombarely, A. , Allen, F. , Hurst, R. , White, B. , Kernodle, S.P. , Bromley, J.R. , Sanchez‐Tamburrino, J.P. , Lewis, R.S. & Mueller, L.A. (2017) A reference genome for Nicotiana tabacum enables map‐based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 18, 448. 10.1186/s12864-017-3791-6 PubMed DOI PMC

Ehneß, R. & Roitsch, T. (1997) Co‐ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant Journal, 11, 539–548. 10.1046/j.1365-313X.1997.11030539.x PubMed DOI

Ehness, R. , Ecker, M. , Godt, D.E. & Roitsch, T. (1997) Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. The Plant Cell, 9, 1825–1841. 10.1105/tpc.9.10.1825 PubMed DOI PMC

Ewels, P. , Magnusson, M. , Lundin, S. & Käller, M. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32, 3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC

Galuszka, P. , Popelková, H. , Werner, T. , Frébortová, J , Pospíšilová, H. , Mik, V. , Köllmer, I. , Schmülling, T. & Frébort, I. (2007) Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. Journal of Plant Growth Regulation, 26, 255–267. 10.1007/s00344-007-9008-5 DOI

Gawer, M. , Laloue, M. , Terrine, C. & Guern, J. (1977). Metabolism and biological significance of benzyladenine‐7‐glucoside. Plant Science Letters, 8, 267–274. 10.1016/0304-4211(77)90192-4 DOI

Gippert, A.‐L. , Madritsch, S. , Woryna, P. , Otte, S. , Mayrhofer, M. , Eigner, H. , Garibay‐Hernández, A. , Molin, E.M. & Mock, H.‐P. (2022) Unraveling metabolic patterns and molecular mechanisms underlying storability in sugar beet. BMC Plant Biology, 22, 430. 10.1186/s12870-022-03784-6 PubMed DOI PMC

Godt, D. E. & Roitsch, T. (1997) Differential regulation of a tomato invertase gene family suggests an important function of extracellular isoenzymes in establishing and maintaining sink metabolism. Plant Physiology, 115, 273–282. 10.1104/pp.115.1.273 PubMed DOI PMC

Großkinsky, D.K. , Edelsbrunner, K. , Pfeifhofer, H. , van der Graaff, E. & Roitsch, T. (2013) Cis‐ and trans‐zeatin differentially modulate plant immunity. Plant Signaling and Behavior, 8, e24798. 10.4161/psb.24798 PubMed DOI PMC

Großkinsky, D.K. , Naseem, M. , Abdelmohsen, U.R. , Plickert, N. , Engelke, T. , Griebel, T. , Zeier, J. , Novák, O. , Strnad, M. , Pfeifhofer, H. , van der Graaff, E. , Simon, U. & Roitsch T. (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiology, 157, 815–830. 10.1104/pp.111.182931 PubMed DOI PMC

Großkinsky, D.K. & Petrášek, J. (2019) Auxins and cytokinins – the dynamic duo of growth‐regulating phytohormones heading for new shores. New Phytologist, 221, 1187–1190. 10.1111/nph.15556 PubMed DOI

Großkinsky, D.K. , Tafner, R. , Moreno, M.V. , Stenglein, S.A. , de Salamone, I.E.G. , Nelson, L.M. , Novak, O. , Strnad, M. , van der Graaff, E. & Roitsch, T. (2016) Cytokinin production by Pseudomonas fluorescens G20‐18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific Reports, 6, 23310. 10.1038/srep23310 PubMed DOI PMC

Großkinsky, D.K. , van der Graaff, E. & Roitsch, T. (2014) Abscisic acid‐cytokinin antagonism modulates resistance against Pseudomonas syringae in tobacco. Phytopathology, 104, 1283–1288. 10.1094/PHYTO-03-14-0076-R PubMed DOI

Gupta, R. , Anand, G. , Pizarro, L. , Laor, D. , Novetz, N. , Sela, N. , Yehuda, T. , Gazit, E. & Bar, M. (2021) Cytokinin inhibits fungal development and virulence by targeting the cytoskeleton and cellular trafficking. mBio, 12, e03068‐20. 10.1128/mbio.03068-20 PubMed DOI PMC

Halbritter, A.H. , De Boeck, H.J. , Eycott, A.E. , Reinsch, S. , Robinson, D.A. , Vicca, S. , Berauer, B. , Christiansen, C.T. , Estiarte, M. , Grünzweig, J.M. , Gya, R. , Hansen, K. , Jentsch, A. , Lee, H. , Linder, S. , Marshall, J. , Peñuelas, J. , Schmidt, I.K. , Stuart‐Haëntjens, E. , Wilfahrt, P. , the ClimMani Working Group & Vandvik, V . (2020) The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 11, 22–37. 10.1111/2041-210X.13331 DOI

Hammerschmidt, R. (2014) Chlorogenic acid: a versatile defense compound. Physiological and Molecular Plant Pathology, 88, iii‐iv. 10.1016/j.pmpp.2014.11.002 DOI

Hann, D.R. , Domínguez‐Ferreras, A. , Motyka, V. , Dobrev, P.I. , Schornack, S. , Jehle, A. , Felix, G. , Chinchilla, D. , Rathjen, J.P. & Boller, T. (2014) The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytologist, 201, 585–598. 10.1111/nph.12544 PubMed DOI

Heinemann, B. & Hildebrandt, T.M. (2021) The role of amino acid metabolism in signaling and metabolic adaptation to stress‐induced energy deficiency in plants. Journal of Experimental Botany, 72, 4643–4645. 10.1093/jxb/erab182 PubMed DOI

Hildebrandt, T.M. , Nunes Nesi, A. , Araújo, W.L. & Braun H.‐P. (2015). Amino acid catabolism in plants. Molecular Plant, 8, 1563–1579. 10.1016/j.molp.2015.09.005 PubMed DOI

Hönig, M. , Plíhalová, L. , Husičková, A. , Nisler, J. & Doležal, K. (2018) Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences, 19, 4045. 10.3390/ijms19124045 PubMed DOI PMC

Hu, L. , Zhang, Z. , Xiang, Z. & Yang, Z. (2016) Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum). Frontiers in Plant Science, 7, 179. 10.3389/fpls.2016.00179 PubMed DOI PMC

Jiang, C.‐J. , Shimono, M. , Sugano, S. , Kojima, M. , Liu, X. , Inoue, H. , Sakakibara, H. , & Takatsuji, H. (2013) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Molecular Plant‐Microbe Interactions, 26, 287–296. 10.1094/MPMI-06-12-0152-R PubMed DOI

Joint Genome Institute (2022) BBTools . Available at: https://jgi.doe.gov/data-and-tools/software-tools/bbtools/ (Accessed 21.04.2023)

Keller, H. , Czernic, P. , Ponchet, M. , Ducrot, P.H. , Back, K. , Chappell, J. , Ricci, P. & Marco, Y. (1998) Sesquiterpene cyclase is not a determining factor for elicitor‐ and pathogen‐induced capsidiol accumulation in tobacco. Planta, 205, 467–476. 10.1007/s004250050345 DOI

Kim, D. , Langmead, B. & Salzberg, S.L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360. 10.1038/nmeth.3317 PubMed DOI PMC

Ko, K.‐W. , Okada, K. , Koga, J. , Jikumaru, Y. , Nojiri, H. & Yamane, H. (2010) Effects of cytokinin on production of diterpenoid phytoalexins in rice. Journal of Pesticide Science, 35, 412–418. 10.1584/jpestics.G09-63 DOI

Kopečný, D. , Končitíková, R. , Popelka, H. , Briozzo, P. , Vigouroux, A. , Kopečná, M. , Zalabák, M. , Skopalová, J. , Frébort, I. & Moréra, S. (2016). Kinetic and structural investigation of the cytokinin oxidase/dehydrogenase active site. The FEBS Journal, 283, 361–377. 10.1111/febs.13581 PubMed DOI

Kulaeva, O.N. (1981) Cytokinin action on transcription and translation in plants. In: Guern, J. , & Péaud‐Lenoël, C. (eds) Metabolism and Molecular Activities of Cytokinins. Proceedings in Life Sciences. Berlin, Heidelberg: Springer, pp. 218–227. 10.1007/978-3-642-68035-9_20 DOI

Laloue, M. , Pethe‐Terrine, C. & Guern, J. (1981) Uptake and metabolism of cytokinins in tobacco cells: studies in relation to the expression of their biological activities. In: Guern, J. , & Péaud‐Lenoël, C. (eds) Metabolism and Molecular Activities of Cytokinins. Proceedings in Life Sciences. Berlin, Heidelberg: Springer, pp. 80–96. 10.1007/978-3-642-68035-9_8 DOI

Lara, M.E.B. , Gonzalez Garcia, M.‐C. , Fatima, T. , Ehneß, R. , Lee, T.K. , Proels, R. , Tanner, W. & Roitsch, T. (2004) Extracellular invertase is an essential component of cytokinin‐mediated delay of senescence. The Plant Cell, 16, 1276–1287. 10.1105/tpc.018929 PubMed DOI PMC

Li, H. , Handsaker, B. , Wysoker, A. , Fennell, T. , Ruan, J. , Homer, N. , Marth, G. , Abecasis, G. & Durbin, R. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC

Liao, Y. , Smyth, G.K. & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930. 10.1093/bioinformatics/btt656 PubMed DOI

Lomin, S.N. , Krivosheev, D.M. , Steklov, M.Y. , Osolodkin, D.I. & Romanov, G.A. (2012) Receptor properties and features of cytokinin signaling. Acta Naturae, 4, 31–45. 10.32607/20758251-2012-4-3-31-45 PubMed DOI PMC

Lou, Z. , Wang, H. , Zhu, S. , Ma, C. & Wang, Z. (2011) Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76, M398‐M403. 10.1111/j.1750-3841.2011.02213.x PubMed DOI

Love, M.I. , Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology, 15, 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

McIntyre, K.E. , Bush, D.R. & Argueso, C.T. (2021) Cytokinin regulation of source‐sink relationships in plant‐pathogen interactions. Frontiers in Plant Science, 12, 677585. 10.3389/fpls.2021.677585 PubMed DOI PMC

Morgan, M. & Shepherd, L. (2022) AnnotationHub: Client to access AnnotationHub resources. R package version 3.2.2.

Mothes, K. (1960) Über das Altern der Blätter und die Möglichkeit ihrer Wiederverjüngung. Die Naturwissenschaften, 47, 337–350.

Nisler, J. (2018) TDZ: mode of action, use and potential in agriculture. In: Ahmad, N. , & Faisal, M. (eds) Thidiazuron: from urea derivative to plant growth regulator. Singapore: Springer, pp. 37–59. 10.1007/978-981-10-8004-3_2 DOI

Okonechnikov, K. , Conesa, A. & García‐Alcalde, F. (2016) Qualimap 2: advanced multi‐sample quality control for high‐throughput sequencing data. Bioinformatics, 32, 292–294. 10.1093/bioinformatics/btv566 PubMed DOI PMC

Pieterse, C.M.J. , Van der Does, D. , Zamioudis, C. , Leon‐Reyes, A. & Van Wees, S.C.M. (2012) Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521. 10.1146/annurev-cellbio-092910-154055 PubMed DOI

Polowick, P.L. & Greyson, R.I. (1984) The relative efficiency of cytokinins in the development of normal spikelets on cultures tassels of Zea mays. Canadian Journal of Botany, 62, 830–834. 10.1139/b84-121 DOI

Potter, K.C. , Wang, J. , Schaller, G.E. & Kieber, J.J. (2018) Cytokinin modulates context‐dependent chromatin accessibility through the type‐B response regulators. Nature Plants, 4, 1102–1111. 10.1038/s41477-018-0290-y PubMed DOI

Raines, T. , Blakley, I.C. , Tsai, Y.‐C. , Worthen, J.M. , Franco‐Zorrilla, J.M. , Solano, R. , Schaller, G.E. , Loraine, A.E. & Kieber, J.J. (2016) Characterization of the cytokinin‐responsive transcriptome in rice. BMC Plant Biology, 16, 260. 10.1186/s12870-016-0932-z PubMed DOI PMC

Roitsch, T. & Gonzalez, M.‐C. (2004) Function and regulation of invertases in higher plants: sweet sensations. Trends in Plant Science, 9, 607–613. 10.1016/j.tplants.2004.10.009 PubMed DOI

Roitsch, T. & Ehneß, R. (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regulation, 32, 359–367. 10.1023/A:1010781500705 DOI

Romanov, G.A. (2009) How do cytokinins affect the cell? Russian Journal of Plant Physiology, 56, 268–290. 10.1134/S1021443709020174 DOI

Romanov, G.A. , Lomin, S.N. & Schmülling, T. (2006) Biochemical characteristics and ligand‐binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. Journal of Experimental Botany, 57, 4051–4058. 10.1093/jxb/erl179 PubMed DOI

Sakakibara, H. (2006) Cytokinins: activity, biosynthesis, and translocation. Annual Reviews of Plant Biology, 57, 431–449. 10.1146/annurev.arplant.57.032905.105231 PubMed DOI

Santos‐Sánchez, N.F. , Salas‐Coronado, R. , Hernández‐Carios, B. & Villanueva‐Cañongo, C. (2019) Shikimic acid pathway in biosynthesis of phenolic compounds. In: Soto‐Hernández, M. , García‐Mateos, R. , & Palma‐Tenango (eds) Plant Physiological Aspects of Phenolic Compounds. London: IntechOpen Ltd, pp. 1–15. 10.5772/intechopen.83815 DOI

Sandor, R. , Wagh, S.G. , Kelterborn, S. , Großkinsky, D.K. , Novak, O. , Olsen, N. , Paul, B. , Petřík, I. , Wu, S. , Hegemann, P. , Strnad, M. , Červený, J. & Roitsch, T. (2024) Cytokinin‐deficient mutants of Chlamydomonas reinhardtii generated by CRISPR‐Cas9 show reduced ability to prime resistance of tobacco against bacterial infection. Physiologia Plantarum, 176, e14311. 10.1111/ppl.14311 PubMed DOI

Schäfer, M. , Brütting, C. , Meza‐Canales, I.D. , Großkinsky, D.K. , Vankova, R. , Baldwin, I.T. & Meldau, S. (2015). The role of cis‐zeatin‐type cytokinins in plant growth regulation and mediating responses to environmental interactions. Journal of Experimental Botany, 66, 4873–4884. 10.1093/jxb/erv214 PubMed DOI PMC

Schäfer, S. , Krolzik, S. , Romanov, G.A. & Schmülling, T. (2000) Cytokinin‐regulated transcripts in tobacco cell culture. Plant Growth Regulation, 32, 307–313. 10.1023/A:1010787417002 DOI

Schaller, G.E. , Bishopp, A. & Kieber, J.J. (2015) The yin‐yang of hormones: cytokinin and auxin interactions in plant development. The Plant Cell, 27, 44–63. 10.1105/tpc.114.133595 PubMed DOI PMC

Shigenaga, A.M. , Berens, M. , Tsuda, K. & Argueso, C.T. (2017) Towards engineering of hormonal crosstalk in plant immunity. Current Opinion in Plant Biology, 38, 164–172. 10.1016/j.pbi.2017.04.021 PubMed DOI

Shine, M.B. , Xiao, X. , Kachroo, P. & Kachroo, A. (2019) Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Science, 279, 81–86. 10.1016/j.plantsci.2018.01.001 PubMed DOI

Stolz, A. , Riefler, M. , Lomin, S.N. , Achazi, K. , Romanov, G.A. & Schmülling, T. (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. The Plant Journal, 67, 157–168. 10.1111/j.1365-313X.2011.04584.x PubMed DOI

Sujatha, M. & Reddy, T.P. (1998) Differential cytokinin effects on the stimulation of in vitro shoot proliferation from meristematic explants of castor (Ricinus communis L.). Plant Cell Reports, 17, 561–566. 10.1007/s002990050442 PubMed DOI

Sul, I.‐W. & Korban, S.S. (1994) Effect of different cytokinins on axillary shoot proliferation and elongation of several genotypes of Sequoia sempervirens. In Vitro Cellular and Developmental Biology ‐ Plant, 30P, 131–135. 10.1007/BF02632201 DOI

Sun, Y.‐L. & Hong, S.‐K. (2011) Effects of citric acid as an important component of the responses to saline and alkaline stress in the halophyte Leymus chinensis (Trin.). Plant Growth Regulation, 64, 129–139. 10.1007/s10725-010-9547-9 DOI

Szweykowska, A. , Gwóźdź, E. & Spychała, M. (1981) The cytokinin control of protein synthesis in plants. In: Guern, J. & Péaud‐Lenoël, C. (eds) Metabolism and Molecular Activities of Cytokinins. Proceedings in Life Sciences. Berlin, Heidelberg: Springer, pp. 212–217. 10.1007/978-3-642-68035-9_19 DOI

Yao, J. , Withers, J. & He, S.Y. (2013) Pseudomonas syringae infection assays in Arabidopsis. In: Goossens, A. & Pauwels, L. (eds) Jasmonate Signaling. Methods in Molecular Biology, vol 1011. Totowa: Humana Press, pp. 63–81. 10.1007/978-1-62703-414-2_6 PubMed DOI

Yang, Q. , Zhao, D. & Liu, Q. (2020) Connections between amino acid metabolism in plants: lysine as an example. Frontiers in Plant Science, 11, 928. 10.3389/fpls.2020.00928 PubMed DOI PMC

Yang, Z. , Xue, B. , Song, G. & Shi, S. (2022) Effects of citric acid on antioxidant system and carbon‐nitrogen metabolism of Elymus dahuricus under Cd stress. Ecotoxicology and Environmental Safety, 233, 113321. 10.1016/j.ecoenv.2022.113321 PubMed DOI

Yu, G. , Wang, L.‐G. , Han, Y. & He, Q.‐Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16, 284–287. 10.1089/omi.2011.0118 PubMed DOI PMC

Vranová, E. , Coman, D. & Gruissem, W. (2012) Structure and dynamics of the isoprenoid pathway network. Molecular Plant, 5, 318–333. 10.1093/mp/sss015 PubMed DOI

Wickham, H. (2009) ‘ggplot2: Elegant graphics for data analysis. In: Gentleman, R. , Hornik, K. & Parmigiani, G. (eds) Use R! New York: Springer. 10.1007/978-0-387-98141-3 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace