• This record comes from PubMed

Cytokinin-deficient Chlamydomonas reinhardtii CRISPR-Cas9 mutants show reduced ability to prime resistance of tobacco against bacterial infection

. 2024 May-Jun ; 176 (3) : e14311.

Language English Country Denmark Media print

Document type Journal Article

Grant support
4265668059 Deutsche Forschungsgemeinschaft (DFG)
18-24397S Biorefining and Circular Economy for Sustainability
21-07661S Grantová agentura České republiky (GAČR)
TN02000044 Technology Agency of the Czech Republic

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.

See more in PubMed

Abdelmohsen, U.R., Ali, W., Eom, S.H., Hentschel, U. & Roitsch, T. (2011) Synthesis of distinctly different sets of antimicrobial activities by elicited plant cell suspension cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 106: 105–113.

Alexandratos, N. & Bruinsma, J. (2012) World agriculture towards 2030/2050: the 2012 revision.

Antoniadi, I., Plačková, L., Simonovik, B., Doležal, K., Turnbull, C., Ljung, K. & Novák, O. (2015) Cell‐type‐specific cytokinin distribution within the Arabidopsis primary root apex. The Plant Cell, 27, 1955–1967.

Argueso, C.T., Ferreira, F. J., Epple, P., To, J.P., Hutchison, C.E., Schaller, G.E., Dangl J.L., & Kieber, J.J. (2012) Two‐component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genetics, 8, e1002448.

Babosha, A. V. (2009) Regulation of resistance and susceptibility in wheat–powdery mildew pathosystem with exogenous cytokinins. Journal of Plant Physiology, 166, 1892–1903.

Bielach. A., Hrtyan, M. & Tognetti, V.B. (2017) Plants under stress: involvement of auxin and cytokinin. International Journal of Molecular Sciences, 18, 1427.

Bileva, T. (2013). Influence of green algae Chlorella vulgaris on infested with xiphinema index grape seedlings. Journal of Earth Science and Climatic Change, 4, 136–138.

Biondi, N., Piccardi, R., Margheri, M.C., Rodolfi, L., Smith, G.D. & Tredici, M.R. (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Applied and Environmental Microbiology, 70, 3313–3320.

Bottrell, D.G. & Smith, R.F. (1982) Integrated pest management. Environmental Science & Technology, 16, 282A‐288A.

Calvo, P., Nelson, L. & Kloepper, J.W. (2014) Agricultural uses of plant biostimulants. Plant and Soil, 383, 3–41.

Chaudhary. V., Prasanna, R., Nain, L., Dubey, S.C., Gupta, V., Singh, R., Jaggi, S. & Bhatnagar, A.K. (2012) Bioefficacy of novel cyanobacteria‐amended formulations in suppressing damping off disease in tomato seedlings. World Journal of Microbiology and Biotechnology, 28, 3301–3310.

Choi, J., Huh, S.U., Kojima, M., Sakakibara, H., Paek, K.H. & Hwang, I. (2010) The cytokinin‐activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1‐dependent salicylic acid signaling in arabidopsis. Developmental Cell, 19, 284–295.

Ciesielska, A., Ruszkowski, M., Kasperska, A., Femiak, I., Michalski, Z. & Sikorski, M. (2012) New insights into the signaling and function of cytokinins in higher plants. BioTechnologia, 93, 400–413.

Coppens, J., Grunert, O., van den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G. & de Gelder, L., (2016) The use of microalgae as a high‐value organic slow‐release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of applied phycology, 28, 2367–2377.

Dowd, C.D., Chronis, D., Radakovic, Z.S., Siddique, S., Schmülling, T., Werner, T., Kakimoto, T., Grundler, F.M.W. & Mitchum, M.G. (2017) Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root‐knot nematodes. Plant Journal, 92, 211–228.

Dukare, A,S., Prasanna, R., Dubey, S.C., Nain, L., Chaudhary, V., Singh, R. & Saxena, A.K. (2011) Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Protection, 30, 436–442.

Ebbert, D. (2019). chisq.posthoc.test: A Post Hoc Analysis for Pearson's Chi‐Squared Test for Count Data. R package version 0.1.2. https://CRAN.R-project.org/package=chisq.posthoc.test.

Fox, J. & Weisberg, S. (2019). An R Companion to Applied Regression_, Third edition. Sage, Thousand Oaks, CA. <URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/>.

Galal, H.R.M., Salem, W.M. & Nasr El‐Deen, F. (2011) Biological control of some pathogenic fungi using marine algae extracts. Research Journal of Microbiology, 6, 645–657.

Greene, E.M. (1980) Cytokinin production by microorganisms. The Botanical Review, 46, 25–74.

Greiner, A., Kelterborn, S., Evers, H., Kreimer, G., Sizova, I. & Hegemann P. (2017). Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc‐Finger Nucleases and CRISPR/Cas9. Plant Cell, 29, 2498–2518.

Großkinsky, D. K., Naseem, M., Abdelmohsen, U. R., Plickert, N., Engelke, T., Griebel, T., Zeier, J., Novák, O., Strnad, M., Pfeifhofer, H., van der Graaff, E., Simon, U., & Roitsch, T. (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant physiology, 157(2), 815–830. https://doi.org/10.1104/pp.111.182931

Großkinsky, D. K., Edelsbrunner, K., Pfeifhofer, H., van der Graaff, E. & Roitsch, T. (2013) Cis‐ and trans‐zeatin differentially modulate plant immunity. Plant signaling & behavior, 8, e24798.

Großkinsky, D. K., van der Graaff, E. & Roitsch, T. (2014) Abscisic acid‐cytokinin antagonism modulates resistance against Pseudomonas syringae in tobacco. Phytopathology, 104, 1283–1288.

Großkinsky, D.K., Tafner, R., Moreno, M. V., Stenglein, S.A., de Salamone, I.E.G., Nelson, L.M., Novak, O., Strnad, M., van der Graaff, E. & Roitsch, T. (2016) Cytokinin production by Pseudomonas fluorescens G20‐18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific reports, 6, 23310.

Han, X., Zeng, H., Bartocci, P., Fantozzi, F. & Yan, Y. (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation, 4, 25.

Hellio, C., Bremer, G., Pons, A.M., Le Gal, Y. & Bourgougnon, N. (2000) Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France, Applied Microbiology Biotechnology, 54, 543–549.

Hussain, A., Krischke, M., Roitsch, T. & Hasnain, S. (2010) Rapid determination of cytokinins and auxin in cyanobacteria. Current Microbiology, 61, 361–369.

Jameson, P. (2000) Cytokinins and auxins in plant‐pathogen interactions‐An overview. Plant Growth Regulation, 32: 369–380.

Jirásková, D., Poulíčková, A., Novák, O., Sedláková, K., Hradecká, V. & Strnad, M, (2009) High throughput screening technology for monitoring phytohormone production in microalgae. Journal of Phycology, 45, 108–118.

Kelterborn, S., Boehning, F., Evers, H. & Hegemann P. (2022). Gene editing in green alga Chlamydomonas reinhardtii via CRISPR‐Cas9 ribonucleoproteins. Plant Synthetic Biology 2379: 45–65.

Kieber, J.J. & Schaller, G.E. (2018) Cytokinin signaling in plant development. Development 145, dev149344.

Kim, M.J., Shim, C.K., Kim, Y.K., Ko, B.G., Park, J.H., Hwang, S.G. & Kim, B.H. (2018) Effect of biostimulator Chlorella fusca on improving growth and qualities of chinese chives and spinach in organic farm. Plant Pathology Journal, 34, 567.

Kumar, A. & Singh, J.S. (2020) Microalgal bio‐fertilizers. In: Jacob‐Lopes, E., Maroneze, M.M., Queiroz, M.I. & Zepka, L.Q. (eds) Handbook of Microalgae‐Based Processes and Products. Academic Press, pp. 445–463.

Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara. H, & Kyozuka, J. (2007) Direct control of shoot meristem activity by a cytokinin‐activating enzyme. Nature, 445, 652–655.

Kuroha T., Tokunaga H., Kojima M., Ueda N., Ishida T., Nagawa S., Fukuda H., Sugimoto K. & Sakakibara H. (2009) Functional Analyses of LONELY GUY Cytokinin‐Activating Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis. Plant Cell, 21, 3152–3169.

Lee, S., Kim, S., Lee, N., Ahn, C. & Ryu, C. (2020) d‐Lactic acid secreted by Chlorella fusca primes pattern‐triggered immunity against Pseudomonas syringae in Arabidopsis. The Plant Journal, 102, 761–778.

Lee, S. M., & Ryu, C. M. (2021). Algae as New Kids in the Beneficial Plant Microbiome. Frontiers in plant science, 12, 599742. https://doi.org/10.3389/fpls.2021.599742.

Lee, Y.J., Ko, Y.J. & Jeun, Y.C. (2016) Illustration of Disease Suppression of Anthracnose on Cucumber Leaves by Treatment with Chlorella fusca. Research in Plant Disease, 22, 257–263.

Lu, Y. & Xu, J. (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends in Plant Science, 20, 273–282.

Manjunath, M., Prasanna, R., Nain, L., Dureja, P., Singh, R., Kumar, A., Jaggi, S. & Kaushik, B.D. (2010) Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Archives of Phytopathology and Plant Protection, 43, 666–677.

McMillan, J.R., Watson, I.A., Ali, M. & Jaafar, W. (2013) Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment. Applied Energy, 103, 128–134.

Nayar, S. (2021) Exploring the Role of a Cytokinin‐Activating Enzyme LONELY GUY in Unicellular Microalga Chlorella variabilis. Frontiers in Plant Science, 11, 611871.

Ordög, V., Stirk, W.A, van Staden, J., Novak, O. & Strnad, M. (2004) Endogenous cytokinins in three genera of microalgae from the Chlorophyta. Journal of Phycology, 40, 88–95.

Pal, K.K. & Gardener, B.M. (2006) Biological control of plant pathogens. The Plant Health Instructor, http://doi.org/10.1094/PHI-A-2006-1117-02

Park, W.K., Yoo, G., Moon, M., Kim, C.W., Choi, Y.E. & Yang, J.W. (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Applied Biochemistry and Biotechnology, 171, 1128–1142.

Park, Y.G., Mun, B.G., Kang, S.M., Hussain, A., Shahzad, R., Seo, C.W., Kim, A.Y., Lee, S.U., Oh, K.Y., Lee, D.Y., Lee, I.J. &Yun, B.W. (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12, e0173203.

Prasanna, R., Babu, S., Bidyarani, N., Kumar, A., Triveni, S., Monga, D., Mukherjee, A.K., Kranthi, S., Gokte‐Narkhedkar, N. & Adak, A. (2015) Prospecting cyanobacteria‐fortified composts as plant growth promoting and biocontrol agents in cotton. Experimental Agriculture, 51, 42–65.

Prasanna, R., Chaudhary, V., Gupta, V., Babu, S., Kumar, A., Singh, R., Shivay, Y.S. & Nain, L (2013) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. European Journal of Plant Pathology, 136, 337–353.

Prasanna, R., Kanchan, A., Ramakrishnan, B., Ranjan, K., Venkatachalam, S., Hossain, F., Shivay, Y.S., Krishnan, P. & Nain, L. (2016) Cyanobacteria‐based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids. European Journal of Soil Biology, 75, 15–23.

Prinsen, E., Kamínek, M. & van Onckelen, H.A. (1997) Cytokinin biosynthesis: a black box? Plant Growth Regulation, 23: 3–15.

Quintas‐Nunes, F., Reynolds‐Brandão, P., Crespo, M. T. B., Glick, B. R., & Nascimento, F. X. (2023) Plant growth promotion, phytohormone production and genomics of the rhizosphere‐associated microalga, micractinium rhizosphaerae sp. nov. Plants, 12, 651.

Rachidi, F., Benhima, R., Sbabou, L. & Arroussi, H. El. (2020) Microalgae polysaccharides bio‐stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology Reports 25, e00426.

Ramakrishnan, B., Raju, M. N., Venkateswarlu, K., & Megharaj, M. (2023) Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: a critical view. Environmental Science Advances, 2(4), 586–611.

Rankic, I., Zelinka, R., Ridoskova, A., Gagic, M., Pelcova, P. & Huska, D. (2021) Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor. Scientific Reports, 11, 17125.

Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E. & Tava, A. (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9, 192.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J., Folberth, C., Glotter, M. & Khabarov, N. (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111, 3268–3273.

Sakakibara, H. (2006) Cytokinins: Activity, Biosynthesis, and Translocation. Annual Review of Plant Biology, 57, 431–449.

Sam, F. (2023) janitor: Simple Tools for Examining and Cleaning Dirty Data. R package version 2.2.0. https://CRAN.R-project.org/package=janitor.

Shanks, C.M., Rice, J.H., Zubo, Y., Schaller, G.E., Hewezi, T. & Kieber, J.J. (2016) The Role of cytokinin during infection of arabidopsis Thaliana by the cyst nematode heterodera schachtii. Molecular Plant‐Microbe Interactions, 29, 57–68.

Schäfer, M., Brütting, C., Meza‐Canales, ID., Großkinsky, D.K., Vankova, R., Baldwin, I.T. & Meldau, S. (2015) The role of cis‐zeatin‐type cytokinins in plant growth regulation and mediating responses to environmental interactions. Journal of Experimental Botany, 66, 4873–84.

Siddique, S., Radakovic, Z.S., De La Torre, C.M., Chronis, D., Novák, O., Ramireddy, E., Holbein, J., Matera, C., Hütten, M., Gutbrod, P., Anjam, M.S., Rozanska, E., Habash, S., Elashry, A., Sobczak, M., Kakimoto, T., Strnad, M., Schmülling, T., Mitchum, M.G. & Grundler, F.M.W. (2015) A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proceedings of the National Academy of Sciences of the United States of America, 112, 12669–12674.

Singh, N.K., Dhar, D.W. & Tabassum, R. (2016) Role of Cyanobacteria in Crop Protection. Proceedings of the National Academy of Sciences India Section B ‐ Biological Sciences, 86, 1–8.

Singh, S. (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. Journal of applied microbiology, 117, 1221–1244.

Spencer, G., Hans‐Peter, P., Luciano. S. & Dorai, R. (2023) multcompView: Visualizations of Paired Comparisons. R package version.

Steensland, A. (2019) Global Agricultural Productivity Report: Productivity Growth for Sustainable Diets and More. 2019 Global Agricultural Productivity Report: Productivity Growth for Sustainable Diets and More.

Stirk, W.A., Ordög, V., van Staden, J. Jäger, K. (2002) Cytokinin‐ and auxin‐like activity in Cyanophyta and microalgae. Journal of Applied Phycology, 14, 215–221.

Stirk, W.A., Novak, O., Strnad, M. & van Staden, J. (2003). Cytokinins in macroalgae. Plant Growth Regulation, 41, 13–24.

Stirk, W.A., Ördög, V., Novák, O., Rolčík, J., Strnad, M., Bálint, P. & van Staden, J. (2013) Auxin and cytokinin relationships in 24 microalgal strains1. Journal of Applied Phycology, 49, 459–467.

Su, Y., Xia, S., Wang, R. & Xiao, L. (2017) Phytohormonal quantification based on biological principles. Hormone Metabolism and Signaling in Plants. Elsevier Inc., pp. 431–470.

Svačinová, J., Novák, O., Plačková, L., Lenobel, R., Holík, J., Strnad, M., Doležal, K. (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid‐phase extraction. Plant Methods, 8, 17.

Tian, B., Wang, Y., Zhu, Y., Lü, X., Huang, K., Shao, N. & Beck, C.F. (2006) Synthesis of the photorespiratory key enzyme serine: glyoxylate aminotransferase in C. reinhardtii is modulated by the light regime and cytokinin. Physiologia Plantarum, 127, 571–582.

Tokunaga, H., Kojima, M., Kuroha, T., Ishida, T., Sugimoto, K., Kiba, T. & Sakakibara, H. (2012) Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG‐dependent pathway in cytokinin activation. Plant Journal, 69:355–365.

Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A. & Brown, P.H. (2017) Biostimulants in Plant Science: A Global Perspective. Frontiers in Plant Science 7: 2049.

Yokoya, N.S., Stirk, W.A., van Staden, J., Novák, O., Turečková V., Pěnčí k, A, J. & Strnad, M. (2010). Endogenous cytokinins, auxins and abscisic acid in red algae from Brazil. Journal of Phycology, 46, 1198–1205.

Walters, D.R. & McRoberts, N. (2006) Plants and biotrophs: a pivotal role for cytokinins? Trends in Plant Science, 11, 581–586.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, M.S, Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K. & Yutani, H. (2019) Welcome to the tidyverse. Journal of Open Source Software, 4, 1686.

Wu, C.H., Bernard, S.M., Andersen, G.L. & Chen, W. (2009) Developing microbe‐plant interactions for applications in plant‐growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotechnology, 2, 428–440.

Žižková, E., Kubeš, M., Dobrev, P.I., Přibyl, P., Šimura, J., Zahajská, L., Drábková, L.Z., Novák, O. & Motyka, V. (2017) Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Annals of botany 119: 151–166.

Gagnon, P., Nian, R., Lee, J., Tan, L., Latiff, S. M., Lim, C. L., Chuah, C., Bi, X., Yang, Y., Zhang, W., & Gan, H. T. (2014) Nonspecific interactions of chromatin with immunoglobulin G and protein A, and their impact on purification performance. Journal of chromatography. A, 1340, 68–78.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...