The Cytokinin Complex Associated With Rhodococcus fascians: Which Compounds Are Critical for Virulence?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31191583
PubMed Central
PMC6539147
DOI
10.3389/fpls.2019.00674
Knihovny.cz E-zdroje
- Klíčová slova
- Williamsia, dimethyl transferase, fasciation, isopentenyl transferase, methylated cytokinin,
- Publikační typ
- časopisecké články MeSH
Virulent strains of Rhodococcus fascians cause a range of disease symptoms, many of which can be mimicked by application of cytokinin. Both virulent and avirulent strains produce a complex of cytokinins, most of which can be derived from tRNA degradation. To test the three current hypotheses regarding the involvement of cytokinins as virulence determinants, we used PCR to detect specific genes, previously associated with a linear virulence plasmid, including two methyl transferase genes (mt1 and mt2) and fas4 (dimethyl transferase), of multiple strains of R. fascians. We inoculated Pisum sativum (pea) seeds with virulent and avirulent strains of R. fascians, monitored the plants over time and compared these to mock-inoculated controls. We used RT-qPCR to monitor the expression of mt1, mt2, and fas4 in inoculated tissues and LC-MS/MS to obtain a comprehensive picture of the cytokinin complement of inoculated cotyledons, roots and shoots over time. The presence and expression of mt1 and mt2 was associated with those strains of R. fascians classed as virulent, and not those classed as avirulent. Expression of mt1, mt2, and fas4 peaked at 9 days post-inoculation (dpi) in cotyledons and at 15 dpi in shoots and roots developed from seeds inoculated with virulent strain 602. Pea plants inoculated with virulent and avirulent strains of R. fascians both contained cytokinins likely to have been derived from tRNA turnover including the 2-methylthio cytokinins and cis-zeatin-derivatives. Along with the isopentenyladenine-type cytokinins, the levels of these compounds did not correlate with virulence. Only the novel 1- and 2-methylated isopentenyladenine cytokinins were uniquely associated with infection by the virulent strains and are, therefore, the likely causative factors of the disease symptoms.
Zobrazit více v PubMed
Armstrong D. J., Scarbrough E., Skoog F. (1976). Cytokinins in Corynebacterium fascians cultures: isolation and identification of 6-(4-Hydroxy-3-methyl-cis-2-butenylamino)-2-methylthiopurine. Plant Physiol. 58, 749–752. 10.1104/pp.58.6.749 PubMed DOI PMC
Bai Y., Müller D. B., Srinivas G., Garrido-Oter R., Potthoff E., Rott M., et al. (2015). Functional overlap and specialization of the Arabidopsis leaf and root microbiotas. Nature 528:364–369. 10.1038/nature16192 PubMed DOI
Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. . (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. 10.1373/clinchem.2008.112797 PubMed DOI
Creason A. L., Vandeputte O. M., Savory E. A., Davis E. W. I. I., Putnam M. L., Hu E., et al. . (2014). Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS ONE 9:e101996. 10.1371/journal.pone.0101996 PubMed DOI PMC
Crespi M., Messens E., Caplan A. B., Van Montagu M., Desomer J. (1992). Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 11, 795–804. 10.1002/j.1460-2075.1992.tb05116.x PubMed DOI PMC
de O Manes C. L., Van Montagu M., Prinsen E., Goethals K., Holsters M. (2001). De novo cortical cell division triggered by the phytopathogen Rhodococcus fascians in tobacco. Mol. Plant Microbe Interact. 14, 189–195. 10.1094/MPMI.2001.14.2.189 PubMed DOI
Depuydt S., Doležal K., Van Lijsebettens M., Moritz T., Holsters M., Vereecke D. (2008). Modulation of the hormone setting by Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis. Plant Physiol. 146, 1267–1281. 10.1104/pp.107.113969 PubMed DOI PMC
Dhandapani P., Song J., Novák O., Jameson P. E. (2017). Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Ann. Bot. 119, 841–852. 10.1093/aob/mcw202 PubMed DOI PMC
Dhandapani P., Song J., Novák O., Jameson P. E. (2018). Both epiphytic and endophytic strains of Rhodococcus fascians influence transporter gene expression and cytokinins in infected Pisum sativum L. seedlings. Plant Growth Regul. 85, 231–242. 10.1007/s10725-018-0387-3 DOI
Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950, 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI
Dolzblasz A., Banasiak A. H., Vereecke D. (2018) Neovascularization during leafy gall formation on Arabidopsis thaliana upon Rhodococcus fascians infection. Planta 247, 215–228. 10.1007/s00425-017-2778-5 PubMed DOI
Dulla G., Lindow S. E. (2008). Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface. Proc. Natl. Acad. Sci. U.S.A. 105, 3082–3087. 10.1073/pnas.0711723105 PubMed DOI PMC
Eason J. R., Jameson E. P., Bannister P. (1995). Virulence assessment of Rhodococcus fascians strains on pea cultivars. Plant Pathol. 44, 141–147.
Eason J. R., Morris R. O., Jameson E. P. (1996). The relationship between virulence and cytokinin production by Rhodococcus fascians (Tilford 1936) Goodfellow 1984. Plant Pathol. 45, 323–331. 10.1046/j.1365-3059.1996.d01-130.x DOI
Evidente A., Fujii T., Iacobellis N. S., Riva S., Sisto A., Surico G. (1991). Structure-activity relationships of zeatin cytokinins produced by plant pathogenic Pseudomonades. Phytochem 30, 3505–3510. 10.1016/0031-9422(91)80055-6 DOI
Evidente A., Suricot G., Iacobellis N. S., Randazzo G. (1986). 1′-methyl-zeatin, an additional cytokinin from Pseudomonas syringae pv. savastanoi. Phytochem 25, 525–526. 10.1016/S0031-9422(00)85515-6 DOI
Francis I., De Keyser A., De Backer P., Simon-Mateo C., Kalkus J., Pertry I., et al. . (2012). pFiD188, the linear virulence plasmid of Rhodococcus fascians D188. Mol. Plant Mic. Int. 25, 637–647. 10.1094/MPMI-08-11-0215 PubMed DOI
Francis I. M., Stes E., Zhang Y., Rangel D., Audenaert K., Vereecke D. (2016). Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. New Biotechnol. 33, 706–717. 10.1016/j.nbt.2016.01.009 PubMed DOI
Francis I. M., Vereecke D. (2019) Plant-associated Rhodococcus species, for better for worse, in Biology of Rhodococcus, Vol. 16, ed Alvarez H. Microbiology Monographs (Cham: Springer; ), 359–377. 10.1007/978-3-030-11461-9_13 DOI
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. . (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62, 2827–2840. 10.1093/jxb/erq457 PubMed DOI
Gális I., Bilyeu K., Wood G., Jameson P. E. (2005). Rhodococcus fascians: shoot proliferation without elevated cytokinins? Plant Growth Regul. 46, 109–115. 10.1007/s10725-005-7752-8 DOI
Goethals K., Vereecke D., Jaziri M., Van Montagu M., Holsters M. (2001). Leafy gall formation by Rhodococcus fascians. Annu. Rev. Phytopathol. 3, 27–52. 10.1146/annurev.phyto.39.1.27 PubMed DOI
Goodfellow M. (1984). Reclassification of Corynebacterium fascians (Tilford) Dawson in the genus Rhodococcus as Rhodococcus fascians comb. Nov. Syst. Appl. Microbiol. 5, 225–229. 10.1016/S0723-2020(84)80023-5 DOI
Hoyerová K., Gaudinová A., Malbeck J., Dobrev P. I., Kocábek T., Šolcová B., et al. . (2006). Efficiency of different methods of extraction and purification of cytokinins. Phytochemistry 67, 1151–1159. 10.1016/j.phytochem.2006.03.010 PubMed DOI
Jameson P. E. (1994). Cytokinin metabolism and compartmentation, in Cytokinins—Chemistry, Activity, and Function, eds Mok D. W. S., Mok M. C. (Boca Raton, FL, CRC Press; ), 113–128.
Jameson P. E. (2000). Cytokinins and auxins in plant-pathogen interactions – an overview. Plant Growth Regul. 32, 369–380. 10.1023/A:1010733617543 DOI
Kado C. I., Heskett M. G. (1970). Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathol. 60, 969–976. 10.1094/Phyto-60-969 PubMed DOI
Keikha M. (2018). Williamsia spp. are emerging opportunistic bacteria. N. Microbes N. Infect. 21, 88–89. 10.1016/j.nmni.2017.11.002 PubMed DOI PMC
Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development 145:dev149344. 10.1242/dev.149344 PubMed DOI
Klämbt D., Thies G., Skoog F. (1966). Isolation of cytokinins from Corynebacterium fascians. Proc. Natl. Acad. Sci. U.S.A. 56, 52–59. 10.1073/pnas.56.1.52 PubMed DOI PMC
Kuroha T., Tokunaga H., Kojima M., Ueda N., Ishida T., Nagawa S., et al. . (2009). Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21, 3152–3169. 10.1105/tpc.109.068676 PubMed DOI PMC
Lacey M. S. (1936). Studies in bacteriosis. XXII. 1. Isolation of a bacterium associated with “fasciaton” of sweet peas, “cauliflower” strawberry plants and “leafy gall” of various plants. Ann. Applied Biol. 23, 302–310. 10.1111/j.1744-7348.1936.tb05569.x DOI
Lacey M. S. (1939). Studies in bacteriosis. XXIV. studies on bacterium associated with leafy galls, fasciaton and “cauliflower” disease of various plants. Part III. Further isolation, inoculation experiments and cultural studies. Ann. Appl. Biol. 26, 262–278. 10.1111/j.1744-7348.1939.tb06970.x DOI
Lawson E., Gantotti B., Starr M. (1982). A 78-megadalton plasmid occurs in avirulent strains as well as virulent strains of Corynebacterium fascians. Curr. Microbiol. 7, 327–332. 10.1007/BF01572598 DOI
Lomin S. N., Krivosheev D. M., Steklov M. Y., Arkhipov D. V., Osolodkin D. I., Schmülling T., et al. . (2015). Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 66, 1851–1863. 10.1093/jxb/eru522 PubMed DOI PMC
MacDonald E. M., Powell G. K., Regier D. A., Glass N. L., Roberto F., Kosuge T., et al. . (1986). Secretion of zeatin, ribosylzeatin, and ribosyl-1″-methylzeatin by Pseudomonas savastanoi: plasmid-coded cytokinin biosynthesis. Plant Physiol. 82, 742–747. 10.1104/pp.82.3.742 PubMed DOI PMC
McKenzie M. J., Mett V., Reynolds P. H. S., Jameson P. E. (1998). Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. Plant Physiol. 116, 969–977. 10.1104/pp.116.3.969 PubMed DOI PMC
Miller H. J., Janse J. D., Kamerman W., Muller P. J. (1980). Recent observations on leafy gall in Liliaceae and some other families. Netherlands J Plant Pathol. 86, 55–68. 10.1007/BF01974335 DOI
Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., et al. . (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103, 16598–16603. 10.1073/pnas.0603522103 PubMed DOI PMC
Morris R. O. (1987). Molecular aspects of hormone synthesis and action genes specifying auxin and cytokinin biosynthesis in prokaryotes, in Plant Hormones, ed. Davies P. J. (Dordrecht: Kluwer Academic Publishers; ), 318–339.
Murai N., Skoog F., Doyle M. E., Hanson R. S. (1980). Relationships between cytokinin production, presence of plasmids, and fasciation caused by strains of Corynebacterium fascians. Proc. Natl. Acad. Sci. U.S.A. 77, 619–623. 10.1073/pnas.77.1.619 PubMed DOI PMC
Ninan A. S., Grant J., Song J., Jameson P. E. (2019). Expression of genes related to sugar and amino acid transport and cytokinin metabolism during leaf development and senescence in Pisum sativum L. Plants 8:76. 10.3390/plants8030076 PubMed DOI PMC
Oduro K. A., Munnecke D. E. (1975). Persistence of pea cotyledons induced by Corynebacterium fascians. Phytopathol 65, 1114–1116. 10.1094/Phyto-65-1114 DOI
Perrson B. C., Esberg B., Olafsson O., Bjork G. R. (1994). Synthesis and fuction of isopentyl adenosine derivatives in tRNA. Biochimie 76, 1152–1160. 10.1016/0300-9084(94)90044-2 PubMed DOI
Pertry I. (2009). How the Fas Locus Contributes to Rhodococcus fascians Cytokinin Production: an in-depth Molecular and Biochemical Analysis. Gent: Ghent University; Available online at: http://hdl.handle.net/1854/LU-529624
Pertry I., Václavíková K., Depuydt S., Galuszka P., Spíchal L., Temmerman W., et al. . (2009). Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc. Natl. Acad. Sci. U.S.A. 106, 929–934. 10.1073/pnas.0811683106 PubMed DOI PMC
Pertry I., Václavíková K., Gemrotová M., Spíchal L., Galuszka P., Depuydt S., et al. . (2010). Rhodococcus fascians impacts plant development through the dynamic fas-mediated production of a cytokinin mix. Mol. Plant Mic. Interact. 23, 1164–1174. 10.1094/MPMI-23-9-1164 PubMed DOI
Powell G. K., Hommes N. G., Kuo J., Castle L. A., Morris R. O. (1988). Inducible expression of cytokinin biosynthesis in Agrobacterium tumefaciens by plant phenolics. Mol. Plant Mic. Interact. 1, 235–242. 10.1094/MPMI-1-235 PubMed DOI
Radhika V., Ueda N., Tsuboi Y., Kojima M., Kikuchi J., Kudo K., et al. . (2015). Methylated cytokinins from the phytopathogen Rhodococcus fascians mimic plant hormone activity. Plant Physiol. 169, 1118–1126. 10.1104/pp.15.00787 PubMed DOI PMC
Rittenberg D., Foster L. (1940). A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biol. Chem. 133, 727–744.
Sakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. Ann. Rev. Plant Biol. 57, 431–449. 10.1146/annurev.arplant.57.032905.105231 PubMed DOI
Savory E. A., Fuller S. L., Weisberg A. J., Thomas W. J., Gordon M. I., Stevens D. M., et al. . (2017). Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 6:e30925. 10.7554/eLife.30925 PubMed DOI PMC
Scarbrough E., Armstrong D. J., Skoog F., Frihart C. R., Leonard N. J. (1973). Isolation of cis-zeatin from Corynebacterium fascians cultures. Proc. National Acad. Sci. U.S.A. 70, 3825–3829. 10.1073/pnas.70.12.3825 PubMed DOI PMC
Schäfer M., Brütting C., Meza-Canales I. D., Großkinsky D. K., Vankova R., Baldwin I. T., et al. . (2015). The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 66, 4873–4884. 10.1093/jxb/erv214 PubMed DOI PMC
Skoog F., Miller C. O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11, 118–130. PubMed
Song J., Jiang L., Jameson P. E. (2012). Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol. 12:78. 10.1186/1471-2229-12-78 PubMed DOI PMC
Stange R. R., Jeffares D., Young C., Scott D. B., Eason J. R., Jameson P. E. (1996). PCR amplification of the fas-1 gene for the detection of virulent strains of Rhodococcus fascians. Plant Pathol. 45, 407–417. 10.1046/j.1365-3059.1996.d01-154.x DOI
Stes E., Francis I., Pertry I., Dolzblasz A., Depuydt S., Vereecke D. (2013). The leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiol Lett. 342, 187–194. 10.1111/1574-6968.12119 PubMed DOI
Stes E., Vandeputte O. M., Jaziri M. E., Holsters M., Vereecke D. (2011). A successful bacterial coup d'état: how Rhodococcus fascians redirects plant development. Annu. Rev. Phytopathol. 49, 69–86. 10.1146/annurev-phyto-072910-095217 PubMed DOI
Suzuki R., Shimodaira H. (2006). Pvclust: An R Package for Assessing the Uncertainty in Hierarchical Clustering. Bioinformatics 22, 1540–1542. 10.1093/bioinformatics/btl117 PubMed DOI
Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., et al. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 18:17 10.1186/1746-4811-8-17 PubMed DOI PMC
Taller B. J. (1994). Distribution, biosynthesis, and function of cytokinins in tRNA, in Cytokinins: Chemistry, Activity, and Function, eds. Mok D.W.S., Mok M. C. (CRC Press, Boca Raton, FL: ), 101–112.
Tarkowski P., Václavíkova K., Novák O., Pertry I., Hanuš J., Whenham R., et al. . (2010). Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 680, 86–91. 10.1016/j.aca.2010.09.020 PubMed DOI
Thimann K. V., Sachs T. (1966). The role of cytokinins in the “fasciation” disease caused by Corynebacterium fascians. American J. Bot. 53, 731–739. 10.1002/j.1537-2197.1966.tb14030.x DOI
Tilford P. E. (1936). Fasciation of sweet peas caused by Phytomonas fascians. J. Agri. Res. 53, 383–394.
Vereecke D., Burssens S., Simón-Mateo C., Inze D., Van Montagu M., Goethals K., et al. . (2000). The Rhodococcus fascians-plant interaction: morphological traits and biotechnological applications. Planta 210, 241–251. 10.1007/PL00008131 PubMed DOI
Zürcher E., Müller B. (2016). Cytokinin synthesis, signaling, and function—advances and new insights. Int. Rev. Cell Mol. Biol. 324, 1–38. 10.1016/bs.ircmb.2016.01.001 PubMed DOI