Antibacterial activity of gallic acid and methyl gallate against emerging non-fermenting bacilli

. 2025 Feb ; 70 (1) : 127-135. [epub] 20240621

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38904883

Grantová podpora
195-MCS-2023 Programa de Apoyo a la Ciencia, Tecnología e Innovacción

Odkazy

PubMed 38904883
DOI 10.1007/s12223-024-01182-z
PII: 10.1007/s12223-024-01182-z
Knihovny.cz E-zdroje

Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Burkholderia cenocepacia are considered emerging pathogens classified as a public health problem due to extensive antimicrobial resistance. Therefore, the discovery of new therapeutic strategies has become crucial. This study aimed to evaluate the antimicrobial activity of gallic acid and methyl gallate against non-fermenting bacteria. The study included five clinical isolates of Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Burkholderia cenocepacia. The minimum inhibitory concentrations of gallic acid and methyl gallate were determined by the broth microdilution method. Growth curves, metabolic activity, and biofilm formation of each bacterial strain in the presence or absence of phenolic compounds were performed. Finally, the therapeutic efficacy of the compounds was evaluated using an in vivo model. Gallic acid and methyl gallate showed antibacterial activity against bacterial strains in a concentration range of 64 to 256 µg/mL, both compounds reduced bacterial growth and metabolic activity of the strains, even at subinhibitory concentrations. Only, methyl gallate exhibited activity to inhibit the formation of bacterial biofilms. Moreover, gallic acid and methyl gallate increased larval survival by up to 60% compared to 30% survival of untreated larvae in a bacterial infection model in Galleria mellonella. Our results highlight the potential of gallic acid and methyl gallate as therapeutic alternatives for infections by emerging non-fermentative bacteria.

Zobrazit více v PubMed

Ahn YJ, Lee CO, Kweon JH, Ahn JW, Park JH (1998) Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J App Microbiol 84:439–443. https://doi.org/10.1046/j.1365-2672.1998.00363.x DOI

Bag PK, Roy N, Acharyya S, Saha DR, Koley H, Sarkar P, Bhowmik P (2019) In vivo fluid accumulation-inhibitory, anticolonization and anti-inflammatory and in vitro biofilm-inhibitory activities of methyl gallate isolated from Terminalia chebula against fluoroquinolones resistant Vibrio cholerae. Microb Pathog 128:41–46. https://doi.org/10.1016/j.micpath.2018.12.037 PubMed DOI

Birhanu BT, Lee EB, Park SC (2020) Evaluation of the pharmacokinetic-pharmacodynamic integration of marbofloxacin in combination with methyl gallate against Salmonella Typhimurium in rats. PLoS ONE 15:e0234211. https://doi.org/10.1371/journal.pone.0234211 PubMed DOI PMC

Bostanghadiri N, Ardebili A, Ghalavand Z, Teymouri S, Mirzarazi M, Goudarzi M, Ghasemi E, Hashemi A (2021) Antibiotic resistance, biofilm formation, and biofilm-associated genes among Stenotrophomonas maltophilia clinical isolates. BMC Res Notes 14:151. https://doi.org/10.1186/s13104-021-05567-y PubMed DOI PMC

Choi JG, Kang OH, Lee YS, Oh YC, Chae HS, Jang HJ, Shin DW, Kwon DY (2009) Antibacterial activity of methyl gallate isolated from Galla rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules 14:5. https://doi.org/10.3390/molecules14051773 DOI

Choi JG, Mun SH, Chahar HS, Bharaj P, Kang OH, Kim SG, Shin DW, Kwon DY (2014) Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems. PLoS ONE 9:e102697. https://doi.org/10.1371/journal.pone.0102697 PubMed DOI PMC

Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—Ninth Edition; Document M07–A9. Clinical and Laboratory Standards Institute, Wayne, PA

Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing; 23rd Informational supplement M100–S23. Clinical & Laboratory Standards Institute, Wayne, PA

Dávila-Aviña J, Gil-Solís C, Merino-Mascorro J, García S, Heredia N (2020) Phenolics with bactericidal activity alter motility and biofilm formation in enterotoxigenic, enteropathogenic, and enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 17:568–575. https://doi.org/10.1089/fpd.2019.2766 PubMed DOI

Díaz-Gómez R, López-Solís R, Obreque-Slier E, Toledo-Araya H (2013) Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori. LWT-Food Sci Technol 54:331–335. https://doi.org/10.1016/j.lwt.2013.07.012 DOI

Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, Heeg P, Ilschner C, Kramer A, Larson E, Merkens W, Mielke M, Oltmanns P, Ross B, Rotter M, Schmithausen RM, Sonntag HG, Trautmann M (2017) Antibiotic resistance: what is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control 12:05. https://doi.org/10.3205/dgkh000290 DOI

García-Hernández C, Rojo-Rubio R, Gives PM, González-Cortazar M, Zamilpa A, Mondragón-Ancelmo J, Villa-Mancera A, Olivares-Pérez J, Tapia-Maruri D, Olmedo-Juárez A (2022) In vitro and in vivo anthelmintic properties of Caesalpinia coriaria fruits against Haemonchus contortus. Exp Parasitol 242:108401. https://doi.org/10.1016/j.exppara.2022.108401 PubMed DOI

Hafiz TA, Aldawood E, Albloshi A, Alghamdi SS, Mubaraki MA, Alyami AS, Aldriwesh MG (2022) Stenotrophomonas maltophilia Epidemiology, resistance characteristics, and clinical outcomes: understanding of the recent three years’ trends. Microorganisms 10:2506. https://doi.org/10.3390/microorganisms10122506 PubMed DOI PMC

Harbarth S, Balkhy HH, Goossens H, Jarlier V, Kluytmans J, Laxminarayan R, Saam M, Van Belkum A, Pittet D, For the world healthcare-associated infections resistance forum participants (2015) Antimicrobial resistance: one world, one fight! Antimicrob Resist Infect Control 4:49. https://doi.org/10.1186/s13756-015-0091-2 DOI PMC

Hossain MA, Park HC, Park SW, Park SC, Seo MG, Her M, Kang J (2020) Synergism of the combination of traditional antibiotics and novel phenolic compounds against Escherichia coli. Pathogens 9:811. https://doi.org/10.3390/pathogens9100811 PubMed DOI PMC

Isler B, Kidd TJ, Stewart AG, Harris P, Paterson DL (2020) Achromobacter infections and treatment options. Antimicrob Agents Chemother 64:e01025–e1120. https://doi.org/10.1128/AAC.01025-20 PubMed DOI PMC

Kang J, Liu L, Liu M, Wu X, Li J (2018) Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control 94:147–154. https://doi.org/10.1016/j.foodcont.2018.07.011 DOI

Kang MS, Oh JS, Kang IC, Hong SJ, Choi CH (2008) Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J Microbiol 46:744–750. https://doi.org/10.1007/s12275-008-0235-7 PubMed DOI

Li ZJ, Liu M, Dawuti G, Dou Q, Ma Y, Liu HG, Aibai S (2017) Antifungal activity of gallic acid in vitro and in vivo. Phytother Res 31:1039–1045. https://doi.org/10.1002/ptr.5823 PubMed DOI

Lima MC, Paiva de Sousa C, Fernandez-Prada C, Harel J, Dubreuil JD, de Souza EL (2019) A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb Pathog 130:259–270. https://doi.org/10.1016/j.micpath.2019.03.025 PubMed DOI

Loh JMS, Adenwalla N, Wiles S, Proft T (2013) Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 4:419–428. https://doi.org/10.4161/viru.24930 PubMed DOI PMC

Marion-Sanchez K, Olive C, Platon MG, Cesarine M, Derancourt C, Pailla K (2020) Achromobacter xylosoxidans in hospital environments: still waters run deep! Trans R Soc Trop Med Hyg 114:470–472. https://doi.org/10.1093/trstmh/trz109 PubMed DOI

Marji SM, Bayan MF, Jaradat A (2022) Facile fabrication of methyl gallate encapsulated folate ZIF-L nanoframeworks as a pH responsive drug delivery system for anti-biofilm and anticancer therapy. Biomimetics 7:242. https://doi.org/10.3390/biomimetics7040242 PubMed DOI PMC

Mechesso AF, Yixian Q, Park SC (2019) Methyl gallate and tylosin synergistically reduce the membrane integrity and intracellular survival of Salmonella Typhimurium. PLoS ONE 14:e0221386. https://doi.org/10.1371/journal.pone.0221386 PubMed DOI PMC

Naga NG, Zaki AA, El-Badan DE, Rateb HS, Ghanem KM, Shaaban MI (2023) Inhibition of Pseudomonas aeruginosa quorum sensing by methyl gallate from Mangifera indica. Sci Rep 13:1. https://doi.org/10.1038/s41598-023-44063-0 DOI

Oliveira APD, Costa MM, Nogueira DM, Dias FS (2020) Characterisation of Staphylococcus aureus strains from milk and goat cheese and evaluation of their inhibition by gallic acid, nisin and velame of the Brazilian caatinga. Int J Dairy Technol 73:345–356. https://doi.org/10.1111/1471-0307.12673 DOI

Qu Q, Cui W, Huang X, Zhu Z, Dong Y, Yuan Z, Dong C, Zheng Y, Chen X, Yuan S, Li Y (2023) Gallic acid restores the sulfonamide sensitivity of multidrug-resistant Streptococcus suis via polypharmaceology mechanism. J Agric Food Chem 71:6894–6907. https://doi.org/10.1021/acs.jafc.2c06991 PubMed DOI

Quinto EJ, Caro I, Villalobos-Delgado LH, Mateo J, De-Mateo-Silleras B, Redondo-Del-Río MP (2019) Food safety through natural antimicrobials. Antibiotics 8:208. https://doi.org/10.3390/antibiotics8040208 PubMed DOI PMC

Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4:482–501. https://doi.org/10.3934/microbiol.2018.3.482 PubMed DOI PMC

Romanova IM, Stepanova TV, Nesterenko LN, Balunets DV, Andreev AL, Shevliagina NV, Borovaia TG, Gintsburg AL (2009) Persistence of Burkholderia cenocepacia bacteria in vivo in dependence of their ability to form biofilms. Zh Mikrobiol Epidemiol Immunobiol 4:29–33

Ruppé É, Woerther PL, Barbier F (2015) Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 5:61. https://doi.org/10.1186/s13613-015-0061-0 PubMed DOI

Scoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S (2017) Burkholderia cenocepacia infections in cystic fibrosis patients: drug resistance and therapeutic approaches. Front Microbiol 8:1592. https://doi.org/10.3389/fmicb.2017.01592 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...