seed development
Dotaz
Zobrazit nápovědu
Plant seeds exhibit many species-specific traits, thus potentially being especially helpful for forensic investigations. Seeds of a broad range of plant species occur in soil seed banks of various habitats and may become attached in large quantities to moving objects. Although plant seeds are now routinely used as trace evidence in forensic practice, only scant information has been published on this topic in the scientific literature. Thus, the standard methods remain unknown to specialists in such botanical subjects as plant ecology and plant geography. These specialists, if made aware of the forensic uses of seeds, could help in development of new, more sophisticated approaches. We aim to bridge the gap between forensic analysts and botanists. Therefore, we explore the available literature and compare it with our own experiences to reveal both the potential and limits of soil seed bank and seed dispersal analysis in forensic investigations. We demonstrate that habitat-specific and thus relatively rare species are of the greatest forensic value. Overall species composition, in terms of species presence/absence and relative abundance can also provide important information. In particular, the ecological profiles of seeds found on any moving object can help us identify the types of environments through which the object had travelled. We discuss the applicability of this approach to various European environments, with the ability to compare seed samples with georeferenced vegetation databases being particularly promising for forensic investigations. We also explore the forensic limitations of soil seed bank and seed dispersal vector analyses.
- MeSH
- botanika MeSH
- databáze jako téma MeSH
- ekosystém MeSH
- půda * MeSH
- semena rostlinná * MeSH
- semenná banka * MeSH
- šíření semen * MeSH
- soudní vědy MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
WHO technical report series ; no. 555 FAO agricultural studies ; no. 95
29 s. : tab. ; 20 cm
- MeSH
- antifungální látky MeSH
- bezpečnost potravin MeSH
- hexachlorbenzen chemie toxicita MeSH
- nemoci rostlin prevence a kontrola MeSH
- organortuťnaté sloučeniny chemie toxicita MeSH
- semena rostlinná chemie MeSH
- sloučeniny rtuti škodlivé účinky toxicita MeSH
- zemědělství metody MeSH
- zohlednění rizika MeSH
- Konspekt
- Farmacie. Farmakologie
- NLK Obory
- zemědělství a potravinářství
- toxikologie
- NLK Publikační typ
- publikace WHO
Plant-derived smoke and smoke-isolated compounds stimulate germination in seeds from over 80 genera. It has also been reported that smoke affects overall plant vigour and has a stimulatory effect on pollen growth. The effect of smoke on orchid seeds, however, has not been assessed. In South Africa, orchid seeds from several genera may be exposed to smoke when they are released from their seedpods. It is therefore possible that smoke may affect their germination and growth. Therefore, the effects of smoke [applied as smoke-water (SW)] and two smoke-derived compounds, karrikinolide (KAR1 ) and trimethylbutenolide (TMB), were investigated on the germination and growth of orchid seeds in vitro. The effect of SW, KAR1 and TMB were investigated on the endangered epiphytic orchid, Ansellia africana, which is indigenous to tropical areas of Africa. Smoke-water, KAR1 and TMB were infused in half-strength MS medium. The number of germinated seeds and number of seeds and protocorm bodies to reach predetermined developmental stages were recorded on a weekly basis using a dissecting microscope for a 13-week period. Infusing SW 1:250 (v:v) into half-strength MS medium significantly increased the germination rate index (GRI) and the development rate index (DRI) of the A. africana seeds. All the SW treatments significantly increased the number of large protocorm bodies at the final stage of development. Infusing KAR1 into the growing medium had no significant effect on germination or development of the seeds. The TMB treatment, however, significantly reduced the GRI and DRI of A. africana seeds.
Albendazole (ABZ), widely used benzimidazole anthelmintic, administered to animals enters via excrements into environment and may impact non-target organisms. Moreover, exposure of lower development stages of helminths to anthelmintics may also encourage the development of drug-resistant strains of helminths. In present project, the kinetics of ABZ (10 mg kg(-1) p.o.) and its metabolite (ABZ.SO, ABZSO2) elimination in faeces from treated Texel lambs were studied using UHPLC/MS/MS with the aim to find out their concentrations achievable in the environment. Consequently, the effect of these compounds on lower development stages of Barber's pole worm (Haemonchus contortus) and on germination of white mustard (Sinapis alba) seeds was evaluated. The results showed that ABZ concentrations in faeces excreted in 4-60 h after treatment were above the concentrations lethal for H. contortus eggs. Moreover, pre-incubation with sub-lethal doses of ABZ and ABZ.SO did not increase the resistance of H. contortus eggs and larvae to anthelmintics. On the other hand, concentrations of ABZ and ABZ.SO in faeces are so high that might have negative influence on non-target soil invertebrates. As neither ABZ nor its metabolites affect the germination of mustard seeds, phytoremediation could be considered as potential tool for detoxification of ABZ in the environment.
- MeSH
- albendazol analýza farmakologie MeSH
- feces chemie MeSH
- Haemonchus účinky léků růst a vývoj MeSH
- hořčice rodu Sinapis účinky léků růst a vývoj MeSH
- klíčení účinky léků MeSH
- ovce MeSH
- semena rostlinná účinky léků MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Seed development in flowering plants is a critical part of plant life for successful reproduction. The formation of viable seeds requires the synchronous growth and development of the fruit and the three seed structures: the embryo, the endosperm, the seed coat. Molecular communication between these tissues is crucial to coordinate these developmental processes. The phytohormone auxin is a significant player in embryo, seed and fruit development. Its regulated local biosynthesis and its cell-to-cell transport capacity make of auxin the perfect candidate as a signaling molecule to coordinate the growth and development of the embryo, endosperm, seed and fruit. Moreover, newly formed seeds need nutrients and form new carbon sink, generating high sugar flow from vegetative tissues to the seeds. This review will discuss how auxin and sugars may be considered as signaling molecules to coordinate seed and fruit development.
Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle.
- MeSH
- druhová specificita MeSH
- ekosystém MeSH
- květy růst a vývoj MeSH
- lipnicovité růst a vývoj MeSH
- Magnoliopsida růst a vývoj MeSH
- půda MeSH
- roční období MeSH
- semena rostlinná růst a vývoj MeSH
- semenáček růst a vývoj MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
x
x
- MeSH
- analýza potravin statistika a číselné údaje MeSH
- cukrovinky analýza MeSH
- klinické chemické testy MeSH
- mastné kyseliny MeSH
- nutriční hodnota * MeSH
- Papaver * chemie MeSH
- potravní vláknina klasifikace statistika a číselné údaje MeSH
- statistika jako téma MeSH
- výzkum MeSH
- zákonodárství potravinářské MeSH
Atmospheric solids analysis probe mass spectrometry (ASAP-MS) was used for the first time for direct surface analysis of plant material. It can be readily used for surface analysis of whole and intact pea seeds and their seed coats, and for the study of the profile of fatty acids on the outer surface. Furthermore, ASAP-MS in combination with multivariate statistics allowed classification of pea genotypes with respect to physical dormancy and investigation of related biological markers. Hexacosanoic and octacosanoic acids were suggested to be important markers likely influencing water transport through the seed coat into the embryo (with the highest significance for dormant L100 genotype). ASAP-MS provided higher selectivity and better signal of fatty acids compared to (MA)LDI-MS (laser desorption ionization mass spectrometry either matrix free or matrix assisted) providing on the other hand spatial distribution information and results obtained by both methods are mutually supportive. The developed ASAP-MS method and obtained results can be widely utilized in biological, food, and agricultural research. Graphical abstract ᅟ.
The precocious germination of cereal grains before harvest, also known as pre-harvest sprouting, is an important source of yield and quality loss in cereal production. Pre-harvest sprouting is a complex grain defect and is becoming an increasing challenge due to changing climate patterns. Resistance to sprouting is multi-genic, although a significant proportion of the sprouting variation in modern wheat cultivars is controlled by a few major quantitative trait loci, including Phs-A1 in chromosome arm 4AL. Despite its importance, little is known about the physiological basis and the gene(s) underlying this important locus. In this study, we characterized Phs-A1 and show that it confers resistance to sprouting damage by affecting the rate of dormancy loss during dry seed after-ripening. We show Phs-A1 to be effective even when seeds develop at low temperature (13 °C). Comparative analysis of syntenic Phs-A1 intervals in wheat and Brachypodium uncovered ten orthologous genes, including the Plasma Membrane 19 genes (PM19-A1 and PM19-A2) previously proposed as the main candidates for this locus. However, high-resolution fine-mapping in two bi-parental UK mapping populations delimited Phs-A1 to an interval 0.3 cM distal to the PM19 genes. This study suggests the possibility that more than one causal gene underlies this major pre-harvest sprouting locus. The information and resources reported in this study will help test this hypothesis across a wider set of germplasm and will be of importance for breeding more sprouting resilient wheat varieties.
- MeSH
- chromozomy rostlin genetika fyziologie MeSH
- genotypizační techniky MeSH
- jednonukleotidový polymorfismus genetika MeSH
- klíčení genetika fyziologie MeSH
- lokus kvantitativního znaku genetika fyziologie MeSH
- mapování chromozomů MeSH
- pšenice genetika růst a vývoj MeSH
- rostlinné geny genetika fyziologie MeSH
- vegetační klid genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: BrachyView is a novel in-body imaging system which aims to provide LDR brachytherapy seeds position reconstruction within the prostate in real-time. The first prototype is presented in this study: the probe consists of a gamma camera featuring three single cone pinhole collimators embedded in a tungsten tube, above three, high resolution pixelated detectors (Timepix). METHODS: The prostate was imaged with a TRUS system using a sagittal crystal with a 2.5mm slice thickness. Eleven needles containing a total of thirty 0.508U(125)I seeds were implanted under ultrasound guidance. A CT scan was used to localise the seed positions, as well as provide a reference when performing the image co-registration between the BrachyView coordinate system and the TRUS coordinate system. An in-house visualisation software interface was developed to provide a quantitative 3D reconstructed prostate based on the TRUS images and co-registered with the LDR seeds in situ. A rigid body image registration was performed between the BrachyView and TRUS systems, with the BrachyView and CT-derived source locations compared. RESULTS: The reconstructed seed positions determined by the BrachyView probe showed a maximum discrepancy of 1.78mm, with 75% of the seeds reconstructed within 1mm of their nominal location. An accurate co-registration between the BrachyView and TRUS coordinate system was established. CONCLUSIONS: The BrachyView system has shown its ability to reconstruct all implanted LDR seeds within a tissue equivalent prostate gel phantom, providing both anatomical and seed position information in a single interface.
- MeSH
- brachyterapie přístrojové vybavení MeSH
- celková dávka radioterapie MeSH
- dávka záření * MeSH
- fantomy radiodiagnostické * MeSH
- gely MeSH
- lidé MeSH
- nádory prostaty diagnostické zobrazování radioterapie MeSH
- počítačové zpracování obrazu MeSH
- prostata diagnostické zobrazování účinky záření MeSH
- radioterapie řízená obrazem přístrojové vybavení MeSH
- rektum * MeSH
- ultrasonografie přístrojové vybavení MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH