• This record comes from PubMed

Thermal Melanism in Pachnoda iskuulka (Coleoptera: Scarabaeidae: Cetoniinae)

. 2025 Jan 10 ; 16 (1) : . [epub] 20250110

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
Specific Research Project Nr. 2101/2022 University of Hradec Králové
RI project LM2023050 Czech BioImaging
e-INFRA CZ project (ID: 90254) Projects of Large Research, Development and Innovations Infrastructures
Grant Agency of Charles University, project no. 168024/2024 Charles University

Thermal polymorphism, usually represented by thermal melanism (darker coloration in cooler habitats), is a well-known phenomenon in animals. In Cetoniinae, several species in captivity tend to become darker after several generations of breeding, which is probably caused by a lower temperature than is typical for their native habitats. Pachnoda iskuulka is a beetle species occurring in Somaliland. This species is easy to breed in captivity, and it is colorful and variable in the proportions of yellow, red, and black coloration. We kept this species from the first instar larva to the adult stage at three different temperatures. Elytra and pronotum of the adults were photographed, and proportions of the three main colors were measured. The proportion of black coloration significantly increased with size and decreased with temperature, while the proportion of yellow color increased. This species is certainly thermally polymorphic, which can be an adaptation for activation even at lower temperatures. The possible mimicry with beetles of the genus Hycleus is discussed. It is the first confirmation of thermal polymorphism in Cetoniinae and one of a few in Coleoptera.

See more in PubMed

Klein E.A. Comprehensive Etymological Dictionary of the English Language. Elsevier Publishing Company; Amsterdam, The Netherlands: 1969.

Danks H.V. Insect Life Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality. Springer Science & Business Media; Berlin, Germany: 1994.

Lo N., Simpson S.J., Sword G.A. Polyphenism in Insects. Cur. Biol. 2011;21:738–749. PubMed

Kingsolver J.G., Wiernasz D.C. Seasonal Polyphenism in Wing-Melanin Pattern and Thermoregulatory Adaptation in Pieris Butterflies. Am. Nat. 1991;137:816–830. doi: 10.1086/285195. DOI

Clusella-Trullas S., Van Wyk J.H., Spotila J.R. Thermal melanism in ectotherms. J. Therm. Biol. 2007;32:235–245. doi: 10.1016/j.jtherbio.2007.01.013. DOI

Forsman A. Rethinking the thermal melanism hypothesis: Rearing temperature and coloration in pygmy grasshoppers. Evol. Ecol. 2011;25:1247–1257. doi: 10.1007/s10682-011-9477-7. DOI

Andrén C., Nilson G. Reproductive success and risk of predation in normal and melanistic colour morphs of the adder, Vipera berus. Biol. J. Linn. Soc. 1981;15:235–246. doi: 10.1111/j.1095-8312.1981.tb00761.x. DOI

Tanaka S., Saeki S., Nishide Y., Sugahara R., Shiotsuki T. Body-color and behavioral responses by the mid-instar nymphs of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae) to crowding and visual stimuli. Entomol. Sci. 2016;19:391–400. doi: 10.1111/ens.12193. DOI

Köhler G., Samietz J., Schnielzeth H. Morphological and colour morph clines along an altitudinal gradient in the meadow grasshopper Pseudochorthippus parallelus. PLoS ONE. 2017;12:e0189815. doi: 10.1371/journal.pone.0189815. PubMed DOI PMC

Berry A.J., Willmer P.G. Temperature and the colour polymorphism of Philaenus spumarius (Homoptera: Aphrophoridae) Ecol. Entomol. 1986;11:251–259. doi: 10.1111/j.1365-2311.1986.tb00301.x. DOI

Quartau J.A., Borges P.A. On the colour polymorphism of Philaenus spumarius (L.) (Homoptera, Cercopidae) in Portugal. Misc. Zool. 1997;20:19–30.

Brakefield P.M. Ecological studies on the polymorphic ladybird Adalia bipunctata in the Netherlands. I. Population biology and geographical variation of melanism. J. Anim. Ecol. 1984;53:761–774. doi: 10.2307/4658. DOI

Brakefield P.M. Ecological studies on the polymorphic ladybird Adalia bipunctata in the Netherlands. II. Population dynamics, differential timing of reproduction and thermal melanism. J. Anim. Ecol. 1984;53:775–790. doi: 10.2307/4659. DOI

Brakefield P.M., Willmer P.G. The basis of thermal melanism in the ladybird Adalia bipunctata: Differences in reflectance and thermal properties between the morphs. Heredity. 1985;54:9–14. doi: 10.1038/hdy.1985.3. DOI

Michie L.J., Mallard F., Majerus M.E.N., Jigglins F.M. Melanic through nature or nurture: Genetic polymorphism and phenotypic plasticity in Harmonia axyridis. J. Evol. Biol. 2010;23:1699–1707. doi: 10.1111/j.1420-9101.2010.02043.x. PubMed DOI

Honek A., Brown P.M.J., Martinkova Z., Skuhrovec J., Brabec M., Burgio G., Evans E.W., Fournier M., Grez A.A., Kulfan J., et al. Factors determining variation in colour morph frequencies in invasive Harmonia axyridis populations. Biol. Inv. 2020;22:2049–2062. doi: 10.1007/s10530-020-02238-0. DOI

Stuart-Fox D., Newton E., Clusella-Trulas S. Thermal consequences of colour and near-infrared reflectance. Philosoph. Trans. Roy. Soc. B Biol. Sci. 2017;372:20160345. doi: 10.1098/rstb.2016.0345. PubMed DOI PMC

Nedvěd O. Jak “se dělá” tečkování u slunéček. Živa. 2011;2011:34–37.

Gross J., Schmolz E., Hilker M. Thermal Adaptations of the Leaf Beetle Chrysomela lapponica (Coleoptera: Chrysomelidae) to Different Climes of Central and Northern Europe. Environ. Entomol. 2004;33:799–806. doi: 10.1603/0046-225X-33.4.799. DOI

Mason C.W. Structural Colors in Insects II. J. Phys. Chem. 1927;31:321–354. doi: 10.1021/j150273a001. DOI

Davis A.L.V., Brink D.J., Scholtz C.H., Prinsloo L.C., Deschodt C.M. Functional implications of temperature-correlated colour polymorphism in an iridescent, scarabaeine dung beetle. Ecol. Entomol. 2008;33:771–779. doi: 10.1111/j.1365-2311.2008.01033.x. DOI

Stanbrook R.A., Harris W.E., Wheater C., Jones M. Evidence of phenotypic plasticity along an altitudinal gradient in the dung beetle Onthophagus proteus. PeerJ. 2021;9:e10798. doi: 10.7717/peerj.10798. PubMed DOI PMC

Tesař Z. Mecynorrhina machulkai spec. n. (Col. Ceton.) Sborník entomologického oddělení Národního muzea v Praze. 1935;8:101.

Wu L.W., Chen M.Y., Li C.L. Phylogenetic position and morphological polymorphism of the chafer, Clinterocera nigra (Coleoptera: Scarabaeidae: Cetoniinae) from Taiwan. Mitochondrial DNA Part B. 2022;7:1513–1515. doi: 10.1080/23802359.2022.2109438. PubMed DOI PMC

Král D., Hrůzová L., Šípek P., Awale A.I., Hurre A.A., Sommer D. Pachnoda iskuulka (Coleoptera: Scarabaeidae. Zootaxa. 2019;4604:482–496. doi: 10.11646/zootaxa.4604.3.5. PubMed DOI

Vendl T., Kratochvíl L., Šípek P. Ontogeny of sexual size dimorphism in the hornless rose chafer Pachnoda marginata (Coleoptera: Scarabaeidae: Cetoniinae) Zoology. 2016;119:481–488. doi: 10.1016/j.zool.2016.07.002. PubMed DOI

Vendl T., Šípek P., Kouklík O., Kratochvíl L. Hidden complexity in the ontogeny of sexual size dimorphism in male-larger beetles. Sci. Rep. 2018;8:5871. doi: 10.1038/s41598-018-24047-1. PubMed DOI PMC

Fletcher T.J. Farmed deer: New domestic animals defined by controlled breeding. Reprod. Fert. Develop. 2001;13:511–516. doi: 10.1071/RD01094. PubMed DOI

Driscoll C.A., MacDonald D.W., O’Brien S.J. From wild animals to domestic pets, an evolutionary view of domestication. Proc. Nat. Acad. Sci. USA. 2009;106:9971–9978. doi: 10.1073/pnas.0901586106. PubMed DOI PMC

Jakubec P., Qubaiová J., Novák M., Růžička J. Developmental Biology of Forensically Important Beetle, Necrophila (Calosilpha) brunnicollis (Coleoptera: Silphidae) J. Med. Entomol. 2020;20:1–7. doi: 10.1093/jme/tjaa170. PubMed DOI

Vendl T., Šípek P. Immature stages of giants: Morphology and growth characteristics of Goliathus Lamarck, 1801 larvae indicate a predatory way of life (Coleoptera, Scarabaeidae, Cetoniinae) Zookeys. 2016;27:25–44. PubMed PMC

Rueden C.T., Schindelin J., Hiner M.C., Dezonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2023. [(accessed on 15 December 2024)]. Available online: https://www.R-project.org.

Pohlert T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. R Package Version 1.9.8. 2023. [(accessed on 15 December 2024)]. Available online: https://CRAN.R-project.org/package=PMCMRplus.

Neter J., Kutner M., Wasserman W., Nachtsheim C. Applied Linear Statistical Models. 4th ed. McGraw-Hill/Irwin; New York, NY, USA: 1996.

Fox J., Weisberg S. An R Companion to Applied Regression. 3rd ed. Sage; Thousand Oaks, CA, USA: 2019.

Régnière J., Powell J., Bentz B., Nealis V. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J. Ins. Physiol. 2013;58:634–647. doi: 10.1016/j.jinsphys.2012.01.010. PubMed DOI

Zvereva E.L., Kozlov M.V., Neuvonen S. Decrease in feeding niche breadth of Melasoma lapponica (Coleoptera: Chrysomelidae) with increase in pollution. Oecologia. 1995;104:323–329. doi: 10.1007/BF00328368. PubMed DOI

Zvereva E.L., Kozlov M.V., Kruglova O. Colour polymorphism in relation to population dynamics of the leaf beetle, Chrysomela lapponica. Evol. Ecol. 2002;16:523–539. doi: 10.1023/A:1021656829629. DOI

Zverev V., Kozlov M.V., Forsman A., Zvereva E.L. Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: Roles of thermal melanism and developmental plasticity. J. Therm. Biol. 2018;74:100–109. doi: 10.1016/j.jtherbio.2018.03.019. PubMed DOI

Kozlov M.V., Oudendijk Z., Forsman A., Lanta V., Barclay M.V., Gusarov V.I., Zvereva E.L. Climate shapes the spatio-temporal variation in colour morph diversity and composition across the distribution range of Chrysomela lapponica leaf beetle. Ins. Sci. 2022;93:942–955. doi: 10.1111/1744-7917.12966. PubMed DOI

Knapp M., Nedvěd O. Gender and Timing during Ontogeny Matter: Effects of a Temporary High Temperature on Survival, Body Size and Colouration in Harmonia axyridis. PLoS ONE. 2013;8:e74984. doi: 10.1371/journal.pone.0074984. PubMed DOI PMC

Su W., Michaud J.P., Xiaoling T., Murray L., Fan Z. Melanism in a Chinese Population of Harmonia axyridis (Coleoptera: Coccinellidae): A Criterion for Male Investment with Pleiotropic Effects on Behavior and Fertility. J. Ins. Behav. 2013;26:679–689. doi: 10.1007/s10905-013-9384-6. DOI

De Souza A.R., Mayorquin A.Z., Sarmiento C.E. Paper wasps are darker at high elevation. J. Therm. Biol. 2020;89:102535. doi: 10.1016/j.jtherbio.2020.102535. PubMed DOI

Maruyama T., Fuerst P.A. Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics. 1985;111:675–689. doi: 10.1093/genetics/111.3.675. PubMed DOI PMC

Clark R., Crowe T.J. Institute of Agricultural Research; Addis Abeba, Ethiopia: 1977. The Genus Pachnoda in Ethiopia: Identification, Pest Status and Control of the Species.

Willi Y., Van Buskirk J., Hoffmann A.A. Limits to the Adaptive Potential of Small Populations. Ann. Rev. Ecol. Evol. Syst. 2006;37:433–458. doi: 10.1146/annurev.ecolsys.37.091305.110145. DOI

Mallet J. Causes and Consequences of a Lack of Coevolution in Müllerian mimicry. Evol. Ecol. 1999;13:777–806. doi: 10.1023/A:1011060330515. DOI

Bocek M., Kusy D., Motyka M., Bocak L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 2019;16:38. doi: 10.1186/s12983-019-0335-8. PubMed DOI PMC

Asgari M., Alderete N.A., Lin Z., Benavides R., Espinosa H.D. A matter of size? Material, structural and mechanical strategies for size adaptation in the elytra of Cetoniinae beetles. Acta Biomater. 2021;122:236–248. doi: 10.1016/j.actbio.2020.12.039. PubMed DOI

True J.R. Insect melanism: The molecules matter. Trends Ecol. Evol. 2003;18:640–647. doi: 10.1016/j.tree.2003.09.006. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...