The herpes simplex virus (HSV) is a double-stranded DNA human virus that causes persistent infections with recurrent outbreaks. HSV exists in two forms: HSV-1, responsible for oral herpes, and HSV-2, primarily causing genital herpes. Both types can lead to significant complications, including neurological issues. Conventional treatment, involving acyclovir and its derivatives, faces challenges due to drug resistance. This underscores the imperative for continual research and development of new drugs, with a particular emphasis on exploring the potential of natural antivirals. Flavonoids have demonstrated promise in combating various viruses, including those within the herpesvirus family. This review, delving into recent studies, reveals the intricate mechanisms by which flavonoids decode their antiviral capabilities against HSV. By disrupting key stages of the viral life cycle, such as attachment to host cells, entry, DNA replication, latency, and reactivation, flavonoids emerge as formidable contenders in the ongoing battle against HSV infections.
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- flavonoidy farmakologie terapeutické užití MeSH
- herpes simplex * farmakoterapie MeSH
- lidé MeSH
- lidský herpesvirus 1 * fyziologie MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Human herpesviruses (HHVs) are large DNA viruses with highly infectious characteristics. HHVs can induce lytic and latent infections in their host, and most of these viruses are neurotropic, with the capacity to generate severe and chronic neurological diseases of the peripheral nervous system (PNS) and central nervous system (CNS). Treatment of HHV infections based on strategies that include natural products-derived drugs is one of the most rapidly developing fields of modern medicine. Therefore, in this paper, we lend insights into the recent advances that have been achieved during the past five years in utilizing flavonoids as promising natural drugs for the treatment of HHVs infections of the nervous system such as alpha-herpesviruses (herpes simplex virus type 1, type 2, and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The neurological complications associated with infections induced by the reviewed herpesviruses are emphasized. Additionally, this work covers all possible mechanisms and pathways by which flavonoids induce promising therapeutic actions against the above-mentioned herpesviruses.
- MeSH
- centrální nervový systém MeSH
- flavonoidy farmakologie terapeutické užití MeSH
- herpetické infekce * farmakoterapie MeSH
- infekce virem Epsteina-Barrové * MeSH
- lidé MeSH
- lidský herpesvirus 1 * genetika MeSH
- virus Epsteinův-Barrové genetika MeSH
- virus varicella zoster genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Multi-factorial mitochondrial damage exhibits a "vicious circle" that leads to a progression of mitochondrial dysfunction and multi-organ adverse effects. Mitochondrial impairments (mitochondriopathies) are associated with severe pathologies including but not restricted to cancers, cardiovascular diseases, and neurodegeneration. However, the type and level of cascading pathologies are highly individual. Consequently, patient stratification, risk assessment, and mitigating measures are instrumental for cost-effective individualized protection. Therefore, the paradigm shift from reactive to predictive, preventive, and personalized medicine (3PM) is unavoidable in advanced healthcare. Flavonoids demonstrate evident antioxidant and scavenging activity are of great therapeutic utility against mitochondrial damage and cascading pathologies. In the context of 3PM, this review focuses on preclinical and clinical research data evaluating the efficacy of flavonoids as a potent protector against mitochondriopathies and associated pathologies.
- MeSH
- antioxidancia farmakologie terapeutické užití MeSH
- cytoprotekce účinky léků MeSH
- flavonoidy farmakologie terapeutické užití MeSH
- individualizovaná medicína metody MeSH
- lidé MeSH
- mitochondriální nemoci diagnóza prevence a kontrola MeSH
- mitochondrie účinky léků metabolismus MeSH
- mitofagie účinky léků MeSH
- oxidační stres účinky léků MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In 2015, the Nobel Prize in Physiology or Medicine was awarded to Youyou Tu, for her discoveryof the natural anti-malarial drug Artemisinin [...].
- MeSH
- antimalarika * MeSH
- diabetes mellitus 2. typu * MeSH
- lidé MeSH
- Nigella sativa * MeSH
- Nobelova cena MeSH
- odměny a ceny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
Recently, the problem of viral infection, particularly the infection with herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), has dramatically increased and caused a significant challenge to public health due to the rising problem of drug resistance. The antiherpetic drug resistance crisis has been attributed to the overuse of these medications, as well as the lack of new drug development by the pharmaceutical industry due to reduced economic inducements and challenging regulatory requirements. Therefore, the development of novel antiviral drugs against HSV infections would be a step forward in improving global combat against these infections. The incorporation of biologically active natural products into anti-HSV drug development at the clinical level has gained limited attention to date. Thus, the search for new drugs from natural products that could enter clinical practice with lessened resistance, less undesirable effects, and various mechanisms of action is greatly needed to break the barriers to novel antiherpetic drug development, which, in turn, will pave the road towards the efficient and safe treatment of HSV infections. In this review, we aim to provide an up-to-date overview of the recent advances in natural antiherpetic agents. Additionally, this paper covers a large scale of phenolic compounds, alkaloids, terpenoids, polysaccharides, peptides, and other miscellaneous compounds derived from various sources of natural origin (plants, marine organisms, microbial sources, lichen species, insects, and mushrooms) with promising activities against HSV infections; these are in vitro and in vivo studies. This work also highlights bioactive natural products that could be used as templates for the further development of anti-HSV drugs at both animal and clinical levels, along with the potential mechanisms by which these compounds induce anti-HSV properties. Future insights into the development of these molecules as safe and effective natural anti-HSV drugs are also debated.
- MeSH
- antivirové látky chemie farmakologie MeSH
- biologické přípravky chemie farmakologie MeSH
- farmaceutický průmysl MeSH
- lidé MeSH
- lidský herpesvirus 1 účinky léků MeSH
- lidský herpesvirus 2 účinky léků MeSH
- objevování léků * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This study explored the antitubercular properties of fucoxanthin, a marine carotenoid, against clinical isolates of Mycobacterium tuberculosis (Mtb). Two vital enzymes involved in Mtb cell wall biosynthesis, UDP-galactopyranose mutase (UGM) and arylamine-N-acetyltransferase (TBNAT), were selected as drug targets to reveal the mechanism underlying the antitubercular effect of fucoxanthin. The obtained results showed that fucoxanthin showed a clear bacteriostatic action against the all Mtb strains tested, with minimum inhibitory concentrations (MIC) ranging from 2.8 to 4.1 µM, along with a good degree of selectivity index (ranging from 6.1 to 8.9) based on cellular toxicity evaluation compared with standard drug isoniazid (INH). The potent inhibitory actions of fucoxanthin and standard uridine-5'-diphosphate against UGM were recorded to be 98.2% and 99.2%, respectively. TBNAT was potently inactivated by fucoxanthin (half maximal inhibitory concentration (IC50) = 4.8 µM; 99.1% inhibition) as compared to INH (IC50 = 5.9 µM; 97.4% inhibition). Further, molecular docking approaches were achieved to endorse and rationalize the biological findings along with envisaging structure-activity relationships. Since the clinical evidence of the last decade has confirmed the correlation between bacterial infections and autoimmune diseases, in this study we have discussed the linkage between infection with Mtb and autoimmune diseases based on previous clinical observations and animal studies. In conclusion, we propose that fucoxanthin could demonstrate great therapeutic value for the treatment of tuberculosis by acting on multiple targets through a bacteriostatic effect as well as by inhibiting UGM and TBNAT. Such outcomes may lead to avoiding or decreasing the susceptibility to autoimmune diseases associated with Mtb infection in a genetically susceptible host.
- MeSH
- antituberkulotika farmakologie MeSH
- arylamin-N-acetyltransferasa metabolismus MeSH
- autoimunitní nemoci farmakoterapie MeSH
- buněčná stěna účinky léků enzymologie MeSH
- buněčné linie MeSH
- intramolekulární transferasy metabolismus MeSH
- izoenzymy metabolismus MeSH
- karotenoidy farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti metody MeSH
- Mycobacterium tuberculosis účinky léků enzymologie MeSH
- simulace molekulového dockingu metody MeSH
- tuberkulóza farmakoterapie MeSH
- xanthofyly farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In the current study, pyroglutamic acid (pGlu), a natural amino acid derivative, has efficiently inhibited the catalytic activities of three important enzymes, namely: Human recombinant phosphodiesterase-5A1 (PDE5A1), human angiotensin-converting enzyme (ACE), and urease. These enzymes were reported to be associated with several important clinical conditions in humans. Radioactivity-based assay, spectrophotometric-based assay, and an Electrospray Ionization-Mass Spectrometry-based method were employed to ascertain the inhibitory actions of pGlu against PDE5A1, ACE, and urease, respectively. The results unveiled that pGlu potently suppressed the activity of PDE5A1 (half-maximal inhibitory concentration; IC50 = 5.23 µM) compared with that of standard drug sildenafil citrate (IC50 = 7.14 µM). Moreover, pGlu at a concentration of 20 µg/mL was found to efficiently inhibit human ACE with 98.2% inhibition compared with that of standard captopril (99.6%; 20 µg/mL). The urease-catalyzed reaction was also remarkably inactivated by pGlu and standard acetohydroxamic acid with IC50 values of 1.8 and 3.9 µM, respectively. Remarkably, the outcome of in vitro cytotoxicity assay did not reveal any significant cytotoxic properties of pGlu against human cervical carcinoma cells and normal human fetal lung fibroblast cells. In addition to in vitro assays, molecular docking analyses were performed to corroborate the outcomes of in vitro results with predicted structure-activity relationships. In conclusion, pGlu could be presented as a natural and multifunctional agent with promising applications in the treatment of some ailments connected with the above-mentioned anti-enzymatic properties.
- MeSH
- angiotensin konvertující enzym chemie genetika metabolismus MeSH
- buněčné linie MeSH
- cyklické nukleotidfosfodiesterasy, typ 5 chemie genetika metabolismus MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- inhibiční koncentrace 50 MeSH
- kaptopril chemie metabolismus MeSH
- kyselina pyrrolidonkarboxylová chemie metabolismus toxicita MeSH
- kyseliny hydroxamové antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- rekombinantní proteiny biosyntéza chemie izolace a purifikace MeSH
- sildenafil citrát chemie metabolismus MeSH
- simulace molekulového dockingu MeSH
- spektrofotometrie MeSH
- terciární struktura proteinů MeSH
- ureasa antagonisté a inhibitory metabolismus MeSH
- vazebná místa MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Psoromic acid (PA), a bioactive lichen-derived compound, was investigated for its inhibitory properties against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), along with the inhibitory effect on HSV-1 DNA polymerase, which is a key enzyme that plays an essential role in HSV-1 replication cycle. PA was found to notably inhibit HSV-1 replication (50% inhibitory concentration (IC50): 1.9 μM; selectivity index (SI): 163.2) compared with the standard drug acyclovir (ACV) (IC50: 2.6 μM; SI: 119.2). The combination of PA with ACV has led to potent inhibitory activity against HSV-1 replication (IC50: 1.1 µM; SI: 281.8) compared with that of ACV. Moreover, PA displayed equivalent inhibitory action against HSV-2 replication (50% effective concentration (EC50): 2.7 μM; SI: 114.8) compared with that of ACV (EC50: 2.8 μM; SI: 110.7). The inhibition potency of PA in combination with ACV against HSV-2 replication was also detected (EC50: 1.8 µM; SI: 172.2). Further, PA was observed to effectively inhibit HSV-1 DNA polymerase (as a non-nucleoside inhibitor) with respect to dTTP incorporation in a competitive inhibition mode (half maximal inhibitory concentration (IC50): 0.7 μM; inhibition constant (Ki): 0.3 μM) compared with reference drugs aphidicolin (IC50: 0.8 μM; Ki: 0.4 μM) and ACV triphosphate (ACV-TP) (IC50: 0.9 μM; Ki: 0.5 μM). It is noteworthy that the mechanism by which PA-induced anti-HSV-1 activity was related to its inhibitory action against HSV-1 DNA polymerase. Furthermore, the outcomes of in vitro experiments were authenticated using molecular docking analyses, as the molecular interactions of PA with the active sites of HSV-1 DNA polymerase and HSV-2 protease (an essential enzyme required for HSV-2 replication) were revealed. Since this is a first report on the above-mentioned properties, we can conclude that PA might be a future drug for the treatment of HSV infections as well as a promising lead molecule for further anti-HSV drug design.
- MeSH
- antivirové látky * chemie farmakologie MeSH
- benzoxepiny * chemie farmakologie MeSH
- Cercopithecus aethiops MeSH
- DNA-dependentní DNA-polymerasy * chemie metabolismus MeSH
- inhibitory syntézy nukleových kyselin chemie farmakologie MeSH
- kyseliny karboxylové * chemie farmakologie MeSH
- lidé MeSH
- lidský herpesvirus 1 fyziologie MeSH
- lidský herpesvirus 2 fyziologie MeSH
- lišejníky chemie MeSH
- replikace viru účinky léků MeSH
- simulace molekulového dockingu * MeSH
- Vero buňky MeSH
- virové proteiny * antagonisté a inhibitory chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Thymus bovei Benth. (TB) is an important plant in the traditional medicine of the Mediterranean region. This study investigates the health-promoting properties of TB essential oil (TB-EO) for its possible use in clinical practice with regards to its cytotoxic, anti-herpes simplex virus type 2 (HSV-2), and antihypertensive (through inhibition of human angiotensin-converting enzyme; ACE) properties. The phytochemical profile of EO (99.9%) was analyzed by Gas Chromatography with Flame-Ionization Detection (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS). In this study, all biological methods were performed at the level of in vitro studies. The results showed that TB-EO exerted remarked cytotoxic properties against human cervical carcinoma cells, colon cancer cells, and lung adenocarcinoma cells with the half-maximal inhibitory concentration (IC50) values of 7.22, 9.30, and 8.62 µg/mL, respectively, in comparison with that of standard anticancer drug cisplatin with IC50 values of 4.24, 5.21, and 5.43 µg/mL, respectively. Fascinatingly, TB-EO showed very weak cytotoxicity on the healthy human fetal lung fibroblast cells with an IC50 value of 118.34 µg/mL compared with that of cisplatin (IC50 = 10.08 µg/mL). TB-EO, its main component geraniol, TB-EO combined with acyclovir (ACV) along with standard ACV, have displayed pronounced inhibitory properties against the replication of HSV-2 with the half-maximal effective concentration (EC50) values of 2.13, 1.92, 0.81 and 1.94 µg/mL, respectively, with corresponding selectivity indices (SI) 98.59, 109.38, 259.26 and 108.25, respectively. TB-EO and geraniol at a concentration of 15 µg/mL showed prominent inhibitory activities against ACE with % of inhibition 95.4% and 92.2%, respectively, compared with that of standard inhibitor captopril (99.8%; 15 µg/mL). Molecular docking studies were performed to unveil the mechanism of action of geraniol as well as structural parameters necessary for anti-HSV-2 activity (through the inhibition of HSV-2 protease) and ACE inhibition. This is the first report on the chemical composition of Egyptian TB-EO along with the above-mentioned biological activities. Our results may be considered as novel findings in the course of a search for new and active anticancer, anti-HSV-2 and antihypertensive agents, and expand the medicinal value of this plant and its phytochemicals in clinical practice.
- Publikační typ
- časopisecké články MeSH